YOLO(You Only Look Once)作为实时目标检测领域的标杆模型,其高性能不仅依赖于网络结构优化,更得益于独特的数据增强策略。本文系统总结YOLO系列(v3至v8)的核心数据增强方法,分析其设计原理、实现细节及版本演进。
一、YOLO数据增强的核心目标
- 提升小目标检测能力:通过多尺度训练与图像拼接增强小目标可见性。
- 模拟复杂场景:遮挡、光照变化、目标密集等挑战。
- 加速收敛:利用增强生成多样性数据,减少过拟合。
- 硬件友好性:增强方法需适应单卡训练,避免过高计算开销。
二、YOLO各版本增强方法演进
1. YOLOv3/v4:奠定基础框架
-
Mosaic增强(核心创新)
- 原理:随机选取4张图像,缩放后拼接为一张大图(如图1),混合上下文信息。
- 优势:
- 单张图像包含多尺度目标,提升小