深度学习卷积神经网络 ResNet 残差块

ResNet(残差网络)中的残差块(Residual Block)是其核心创新,通过引入跳跃连接(Skip Connection)​​ 解决深度神经网络中的梯度消失和网络退化问题。以下是残差块的系统解析:


一、残差块的核心思想

1. ​残差学习原理
  • 传统网络​:直接学习目标映射 H(x)(输入→输出的复杂变换)。
  • 残差网络​:学习残差函数 F(x)=H(x)−x,输出为 y=F(x)+x 。
  • 优势​:
    • 当 H(x)≈x(恒等映射最优时),网络只需学习 F(x)≈0,比直接学习 H(x) 更简单。
    • 跳跃连接保留原始信息,梯度可通过短路路径直接回传,缓解梯度消失。
2. ​残差块结构


二、两种残差块类型

1. ​BasicBlock(基础块)​
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值