基于多时间尺度的灵活性资源优化配置——多能源微网综合调度策略研究,基于多时间尺度的灵活性资源优化配置: 微网系统的日内滚动优化

基于多时间尺度的灵活性资源优化配置
关键词:多时间尺度;模型预测控制;日内滚动优化;
1. 程序:matlab-yalmip-cplex
2.设备:以包含风力场、光伏电站、微型燃气轮机、蓄电池、余热锅炉、热泵、储热罐和电/热负荷的多能源微网系统为研究对象,构建了各微源的数学模型。
3.内容:提出一种多时间尺度下考虑负荷需求响应机制的微网优化调度策略。
在日前阶段,以源-荷日前预测数据和分时电价数据为基础,利用价格型需求响应机制引导用户积极参与负荷调整,从而平滑了负荷曲线,减小了系统调峰压力,在此基础上,以微网运维成本、购电成本、购气成本和污染物排放惩罚成本之和最小为优化目标建立了日前优化调度模型;在日内阶段,为了进一步提高调度精度,以各分布式电源日内-日前功率方差最小为目标函数,建立微网日内滚动优化调度模型。
最后得到日前和日内不同阶段下各分布式电源的最优功率曲线以及运行成本值。

YID:1957692042272047

小凡凡的铺子



基于多时间尺度的灵活性资源优化配置

摘要:多时间尺度的灵活性资源优化配置是一种有效提高电力系统经济运行和能源利用效率的方法。本文以多能源微网系统为研究对象,基于模型预测控制思想,提出了一种考虑负荷需求响应机制的微网优化调度策略。在日前阶段,通过利用价格型需求响应机制引导用户积极参与负荷调整,平滑了负荷曲线,减小了系统调峰压力。在此基础上,利用微网运维成本、购电成本、购气成本和污染物排放惩罚成本之和最小为目标,建立了日前优化调度模型。在日内阶段,为了进一步提高调度精度,以各分布式电源日内-日前功率方差最小为目标函数,建立了微网日内滚动优化调度模型。最后,通过求解优化模型,得到了日前和日内不同阶段下各分布式电源的最优功率曲线和运行成本。

关键词:多时间尺度;模型预测控制;日内滚动优化;微网系统

  1. 引言
    随着能源需求的增长和能源供给结构的变化,传统的中央化电力系统已经难以满足需求。微网作为一种灵活、可靠、可持续的能源供应方式,正在越来越多地被应用于不同场景中。在微网系统中,各种分布式电源和负荷之间存在复杂的相互作用关系,如何合理配置和调度这些资源,是提高微网经济运行和能源利用效率的关键问题。

  2. 方法
    2.1 研究对象和数据初始化
    本文以包含风力场、光伏电站、微型燃气轮机、蓄电池、余热锅炉、热泵、储热罐和电热负荷的多能源微网系统为研究对象,通过数学模型描述各微源的特性和相互关系。

2.2 日前优化调度模型
在日前阶段,根据源-荷日前预测数据和分时电价数据,引入价格型需求响应机制,通过调整用户负荷,平滑负荷曲线,减小系统的调峰压力。在此基础上,以微网运维成本、购电成本、购气成本和污染物排放惩罚成本之和最小为目标,建立了日前优化调度模型。

2.3 日内滚动优化调度模型
在日内阶段,为进一步提高调度精度,考虑各分布式电源的日内-日前功率方差,并以此为目标函数,建立了微网日内滚动优化调度模型。通过对各分布式电源的功率分配进行优化,实现微网系统在日内时段内的灵活性资源配置。

  1. 结果与讨论
    通过对优化模型进行求解,得到了日前和日内不同阶段下各分布式电源的最优功率曲线和运行成本。结果表明,引入负荷需求响应机制可以有效降低系统调峰压力,提高系统稳定性和经济性。同时,在日内阶段,采用日内滚动优化调度策略可以进一步提高微网系统的调度精度和灵活性。

  2. 结论
    本文通过研究多时间尺度的灵活性资源优化配置问题,以多能源微网系统为研究对象,提出了一种考虑负荷

相关的代码,程序地址如下:http://fansik.cn/692042272047.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值