摘要
现有的方法忽略了问题的对称性,并且计算成本昂贵
我们的方法通过将问题分解为局部上下文提取和全局交互建模
我们提出了平移不变的场景表示和旋转不变的空间学习模块
1.Introduction
痛点:常见的矢量化方法通常对参考系的平移和旋转不具有鲁棒性,为了解决这个问题,现有的研究将场景进行归一化,使其以目标代理为中心,并与目标代理的航向对齐,但随之而来的是计算成本的提高
解决方案:
在第一阶段,我们的框架避免了昂贵的全对全交互建模,并且只在局部提取上下文特征。
在第二阶段,为了补偿受限的局部接受域并捕获场景中的远程依赖,我们通过赋予Transformer编码器局部参考帧之间的几何关系,在以代理为中心的局部区域之间执行全局消息传递。
2.Related Work
略