《HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction》论文精读

本文提出了一种新颖的方法HiVT,通过层次化的局部上下文提取和全局交互模型,解决多智能体运动预测中的对称性和计算效率问题。使用旋转不变的场景表示和局部参考帧间的几何关系,有效捕捉远程依赖,显著降低了计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 原文链接:Zhou_HiVT_Hierarchical_Vector_Transformer_for_Multi-Agent_Motion_Prediction_CVPR_2022_paper.pdf (thecvf.com)

 论文源码:GitHub - ZikangZhou/HiVT: [CVPR 2022] HiVT: Hierarchical Vector Transformer for Multi-Agent Motion Prediction

摘要

现有的方法忽略了问题的对称性,并且计算成本昂贵

我们的方法通过将问题分解局部上下文提取全局交互建模

我们提出了平移不变的场景表示旋转不变的空间学习模块

1.Introduction

痛点:常见的矢量化方法通常对参考系的平移和旋转不具有鲁棒性,为了解决这个问题,现有的研究将场景进行归一化,使其以目标代理为中心,并与目标代理的航向对齐,但随之而来的是计算成本的提高

解决方案:

在第一阶段,我们的框架避免了昂贵的全对全交互建模,并且只在局部提取上下文特征。

在第二阶段,为了补偿受限的局部接受域并捕获场景中的远程依赖,我们通过赋予Transformer编码器局部参考帧之间的几何关系,在以代理为中心的局部区域之间执行全局消息传递。

2.Related Work

略 

3.Approach

3.1.Overall Framework

HIVTHierarchical Vector Transformer for Multi-Agent Motion Prediction)是一种用于多智能体运动预测的分层向量变换器。该模型使用了向量变换器(Vector Transformer)的层级架构,用于对多智能体的运动轨迹进行预测。 HIVT模型旨在解决多智能体之间相互影响和合作的问题。在多智能体系统中,智能体之间的运动和行为往往会相互影响,因此准确预测智能体的运动轨迹变得非常重要。传统的方法往往难以捕捉到智能体之间的复杂相互作用和外部环境的影响,而HIVT模型通过分层向量变换器的架构,可以更好地捕捉到多智能体系统中的相互作用。 HIVT模型首先使用一个全局的向量变换器来处理整个多智能体系统的运动轨迹,以捕捉全局的趋势和相互作用。然后,对于每个智能体,模型使用一个局部的向量变换器来预测其个体的运动轨迹,以考虑个体特定的动态特征和周围智能体的影响。 通过分层向量变换器的架构,HIVT模型能够更好地处理多智能体系统中的动态变化和相互作用,提高了运动轨迹预测的准确性。同时,该模型还可以应用于多个领域,如智能交通、无人机团队协作等。 总而言之,HIVT模型是一种基于分层向量变换器的多智能体运动预测方法,通过捕捉多智能体系统中的相互作用和全局趋势,提高了运动轨迹预测的准确性和适用性。该模型在多个领域具有广泛的应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值