【HiVT】HiVT轨迹预测代码环境配置及训练

0.简介

github项目链接 论文链接
在这里插入图片描述
Argoverse 1.1验证集的预期性能是:
Models minADE minFDE MR
HiVT-64 0.69 1.03 0.10
HiVT-128 0.66 0.97 0.09

在这里插入图片描述

1. 拉取代码仓库

git clone https://github.com/ZikangZhou/HiVT.git
cd HiVT

2. 创建conda环境

conda create -n HiVT 
### HIVT可视化工具和方法 对于致力于开发涉及多智能体动态预测技术解决方案的研究人员来说,HiVT提供了一套强大的功能来支持复杂场景下的数据分析与处理[^2]。然而,在具体讨论HIVT(假设应为HiVT)的可视化方面: #### HiVT中的数据表示形式 在HiVT框架下,输入通常是场景级别的数据,但在内部实现过程中会对每个目标建立中心视角模型,即针对每一个对象构建其周围环境的信息描述。这种设计使得可以在前向传播阶段获得基于个体视角的目标编码,并进一步分析不同实体间的关系及其相互作用模式[^3]。 #### 可视化手段概述 为了更好地理解和解释由HiVT生成的结果,通常采用以下几种主要类型的可视化工具和技术: - **轨迹图**:通过二维或三维图形展示各个物体随时间变化的位置移动路径。 - **热力地图**:利用颜色深浅程度反映特定区域内事件发生的频率或者强度分布情况。 - **关系网络图**:描绘各参与主体之间的关联度以及影响力大小,有助于识别群体行为特征。 - **动画模拟**:创建连续帧序列重现实际发生过程,帮助观察者直观感受整个系统的演变趋势。 ```python import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def plot_3d_trajectory(trajectories): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') for traj in trajectories: xs, ys, zs = zip(*traj) ax.plot(xs, ys, zs) ax.set_xlabel('X Axis') ax.set_ylabel('Y Axis') ax.set_zlabel('Z Axis') plt.show() # 假设有一个包含多个轨迹点列表的数据集 example_trajectories = [ [(0, 0, 0), (1, 1, 1), ...], ... ] plot_3d_trajectory(example_trajectories) ``` 上述代码片段展示了如何使用Python绘制简单的三维空间内物体运动轨迹图表作为基础示例之一。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HIT_Vanni

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值