【HiVT】HiVT轨迹预测代码环境配置及训练

本文介绍了如何从GitHub克隆HiVT项目,创建conda环境,下载并处理Argoverse1.1预测数据集,安装ArgoverseAPI,以及解决训练过程中的文件读取限制问题。详细步骤包括设置环境、数据准备和常见错误处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.简介

github项目链接 论文链接
在这里插入图片描述
Argoverse 1.1验证集的预期性能是:
Models minADE minFDE MR
HiVT-64 0.69 1.03 0.10
HiVT-128 0.66 0.97 0.09

在这里插入图片描述

1. 拉取代码仓库

git clone https://github.com/ZikangZhou/HiVT.git
cd HiVT

2. 创建conda环境

conda create -n HiVT python=3.8
conda activate HiVT
conda install pytorch==1.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
conda install pytorch-geometric==1.7.2 -c rusty1s -c conda-forge
conda install pytorch-lightning==1.5.2 -c conda-forge

3. 下载Argoverse预测数据集

Argoverse Motion Forecasting Dataset v1.1
下载后解压成下面的形式

Argoverse1.1
├── train/
|   └── data/
|       ├── 1.csv
|       ├── 2.csv
|       ├── ...
└── val/
    └── data/
        ├── 1.csv
        ├── 2.csv

4. 安装Argoverse API

如果需要安装在HiVT的conda环境里,忽略下面连接中创建conda环境的操作
Ubuntu Argoverse API安装

5. 训练

如果数据集在home路径(~/Argoverse1.1/)下,执行

python train.py --root ~/Argoverse1.1/ --embed_dim 64  //To train HiVT-64
python train.py --root ~/Argoverse1.1/ --embed_dim 128 //To train HiVT-128

[Image]

6. 常见错误

6.1 RuntimeError(‘received %d items of ancdata’ %

训练过程中报该错误,是因为文件读取太多,修改文件读取限制

ulimit -n         //查看读取文件限制数量
ulimit -n 65536   //修改读取文件限制数量为65536
HIVT(Hierarchical Vector Transformer for Multi-Agent Motion Prediction)是一种用于多智能体运动预测的分层向量变换器。该模型使用了向量变换器(Vector Transformer)的层级架构,用于对多智能体的运动轨迹进行预测HIVT模型旨在解决多智能体之间相互影响和合作的问题。在多智能体系统中,智能体之间的运动和行为往往会相互影响,因此准确预测智能体的运动轨迹变得非常重要。传统的方法往往难以捕捉到智能体之间的复杂相互作用和外部环境的影响,而HIVT模型通过分层向量变换器的架构,可以更好地捕捉到多智能体系统中的相互作用。 HIVT模型首先使用一个全局的向量变换器来处理整个多智能体系统的运动轨迹,以捕捉全局的趋势和相互作用。然后,对于每个智能体,模型使用一个局部的向量变换器来预测其个体的运动轨迹,以考虑个体特定的动态特征和周围智能体的影响。 通过分层向量变换器的架构,HIVT模型能够更好地处理多智能体系统中的动态变化和相互作用,提高了运动轨迹预测的准确性。同时,该模型还可以应用于多个领域,如智能交通、无人机团队协作等。 总而言之,HIVT模型是一种基于分层向量变换器的多智能体运动预测方法,通过捕捉多智能体系统中的相互作用和全局趋势,提高了运动轨迹预测的准确性和适用性。该模型在多个领域具有广泛的应用前景。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HIT_Vanni

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值