蛋白质互作网络分析

简介

蛋白质互作网络(protein protein interaction network,PPI network)是由蛋白通过彼此之间的相互作用构成,来参与生物信号传递、基因表达调节、能量和物质代谢及细胞周期调控等生命过程的各个环节。系统分析大量蛋白在生物系统中的相互作用关系,对了解生物系统中蛋白质的工作原理,了解疾病等特殊生理状态下生物信号和能量物质代谢的反应机制,以及了解蛋白之间的功能联系都有重要意义。在生物医药领域有助于从系统的角度研究疾病分子机制、发现新药靶点等等。

STRING数据库

STRING数据库是常用的蛋白质互作网络数据库STRING数据库,STRING数据库收录多个物种预测的和实验验证的蛋白质-蛋白质互作的数据库,包括直接的物理互作和间接的功能相关。结合差异表达分析结果和数据库收录的互作关系对,构建差异表达蛋白互作网络。分析过程中将差异表达蛋白映射到STRING数据库中,获得差异蛋白的相互作用关系信息。由于STING数据库除了包含有实验数据、从PubMed摘要中文本挖掘的结果和综合其他数据库数据外,还有利用生物信息学的方法预测的结果。再从上述的搜索结果中筛选出适合的蛋白对,并采用恰当的生物信息学分析软件对相互作用结果进行可视化分析,最终生成直观的蛋白质互作网络结果图。

一般分析流程

蛋白互作网络分析流程

### 使用PPI数据集进行链路预测 #### 方法概述 为了利用蛋白质-蛋白质用(PPI)数据集进行链路预测,可以采用图神经网络(GNN),特别是那些针对生物医学领域优化过的模型。这类任务旨在预测两个蛋白质之间是否存在未知的相用。 #### 数据预处理 在准备PPI数据之前,需先清理并整理原始数据,去除重复项以及低质量的数据条目。对于跨物种的应用场景,考虑到不同物种间的差异可能导致分布外(OOD)问题[^1],因此建议专注于单个目标物种的数据集来构建训练集,并谨慎对待来自其他物种的测试样本。 #### 模型选择 根据已有研究,在无监督环境下执行此类任务时,基于节点相似性的卷积矩阵为输入特征能够使GCN编码器取得更好的效果;相比之下,仅依赖于简单度数归一化的邻接矩阵则表现较差[^3]。此外,还有专门设计用于分子间动预测的任务驱动架构如SkipGNN也显示出良好的潜力[^4]。 #### 实现过程 下面给出一段Python代码片段展示如何加载一个常见的PPI数据源——STRING数据库中的部分子网,并初始化一个简单的GraphSAGE模型来进行初步探索: ```python import torch from torch_geometric.datasets import TUDataset from torch_geometric.nn import SAGEConv, GCNConv import torch.nn.functional as F class GraphSAGELinkPred(torch.nn.Module): def __init__(self, input_dim=50, hidden_channels=64, num_layers=2): super(GraphSAGELinkPred, self).__init__() self.convs = torch.nn.ModuleList() for i in range(num_layers): inc = outc = hidden_channels if i == 0: inc = input_dim elif i == num_layers - 1: outc = 1 self.convs.append(SAGEConv(inc, outc)) def forward(self, x, edge_index): h = x for conv in self.convs[:-1]: h = conv(h, edge_index).relu_() logits = self.convs[-1](h, edge_index) return logits.sigmoid() dataset = TUDataset(root='/tmp/PROTEINS', name='PROTEINS') data = dataset[0] model = GraphSAGELinkPred(input_dim=data.num_features) print(model(data.x, data.edge_index)[:10]) ``` 这段代码创建了一个小型两层的GraphSAGE网络实例,并对其进行了随机初始化后的前向传播操以获取一些样例输出。 #### 评估指标 常用的评价标准包括但不限于AUC-ROC曲线下的面积、精确率-召回率曲线下面积(AUPR),以及F1分数等统计量。这些衡量方式可以帮助全面理解所选模型的表现特性及其稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值