生物医学数据统计分析-两组或多组计量资料的比较

本文概述了临床和基础医学研究中如何处理计量资料,重点介绍了t检验和秩和检验在比较不同组别的数据差异时的适用场景,包括正态分布和偏态分布情况下的选择策略。同时,讨论了在不同数据类型和样本条件下进行统计分析的决策过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

在临床或者基础医学研究中,会对不同的数据资料进行数据记录,其中,计量资料指连续的数据,通常有具体的数值,如临床上的身高、体重、血压、血红蛋白、胆红素和白蛋白等。以及基础医学研究中比较患者和正常人的血清铁蛋白、血铅值、不同药物的溶解时间、实验鼠发癌后的生存日数、护理效果评分等。针对不同的数据类型采取不同的统计分析方法,如t检验,秩和检验等。

t检验,亦称student t检验(Student’s t test),主要用于样本含量较小,且分布符合正态分布的样本。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著,是医学论文中最常见到的处理定量资料的假设检验方法。

秩和检验是一种非参数统计中一种常用的检验方法,其中“秩”又称等级、即上述次序号的和称“秩和”,秩和检验就是用秩和作为统计量进行假设检验的方法。

统计分析方法选择

两组资料:
1.大样本资料或服从正态分布的小样本资料。
1)若方差齐性,则作成组t检验。
2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验。
2.小样本偏态分布资料,则用成组的Wilcoxon秩和检验。

多组资料:
1.若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。
2.如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。

在这里插入图片描述
图1. The unpaired t-test method was used to statistically analyze the number of days of onset and the maximum clinical EAE score of the control group and the experimental group.

参考文献

  1. Bettina S, et al. Deletion of Jun Proteins in Adult Oligodendrocytes Does Not Perturb Cell Survival, or Myelin Maintenance In Vivo[J]. PLoS One. 2015; 10(3): e0120454.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荞麦agan

您的每一次打赏,都是对我的鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值