Ollama+LM Studio+Anything LLM本地部署大模型

主要用于自我学习大模型本地部署的实战

首先安装Ollama,官网OllamaGet up and running with large language models.https://ollama.com/

安装LM Studio,官网 LM Studio - Discover, download, and run local LLMsRun Llama, Mistral, Phi-3 locally on your computer.https://lmstudio.ai/

安装Anything LLM,官网 AnythingLLM | The all-in-one AI application for everyoneAnythingLLM is the AI application you've been seeking. Use any LLM to chat with your documents, enhance your productivity, and run the latest state-of-the-art LLMs completely privately with no technical setup.https://anythingllm.com/

启动Ollama

cmd命令行输入 ollama serve

 

 LM Studio下载模型,感觉和Ollama的功能类似,Ollama也可以下载模型

 注意要勾选Hugging Face Proxy代理

 搜索你想要的模型


 

我下载了比较小的,本地可以跑起来的,LM会提示你的机器适不适合你选择的模型

 我用ollama下载的分词模型,下载命令:

ollama pull nomic-embed-text:latest

其实在LM中也可以使用,在这里主要是为了演示三个软件一起使用,玩耍一下,哈!

下面配置Anything LLM,把LM Studio和Ollama一起协作使用

LLM首选项选择LM Studio

这个是要访问LM Studio服务的,所以要打开LM Studio的API服务,端口默认就可以

 

再配置Ollama下载的分词模型,端口也是默认就可以

 

 

下面设置工作区

 

下面就可以和大模型对话了

 

可以看到Ollama的分词日志记录

 

还有LM Studio中的大模型对话服务日志

OK,体验一下大模型的本地部署! 

### 如何使用 LM Studio 进行大语言模型的本地离线部署 #### 工具简介 LM Studio 是一种支持多种操作系统并允许用户在本地环境中运行各种大规模语言模型 (LLM) 的免费工具[^1]。它提供了直观的操作界面以及便捷的功能模块,使得开发者能够轻松完成模型加载、配置和测试。 #### 下载与安装 为了获取 LM Studio 应用程序,需访问其官方站点,并依据目标设备所使用的操作系统版本选择合适的客户端下载链接[^2]。一旦文件被成功传输到计算机上,则按照标准流程执行安装指令即可完成初始化设置过程。 #### 私有数据库集成 如果计划利用自定义资料训练或者微调某个特定领域内的 LLM 实例,那么可以考虑引入 Anything LLM 平台作为辅助解决方案之一[^3]。此方案不仅有助于将各类结构化或非结构化的外部资源转化为可供机器学习算法理解的形式,而且还能进一步增强最终产出物的知识覆盖面及其应用价值。 #### Google Gemma 模型实例 针对具体案例而言,《本地快速部署谷歌开放模型Gemma教程》详细描述了一个完整的实践路径——即通过采用 LM Studio 来实现对来自 Alphabet 子公司 DeepMind 所发布的预训练成果的有效迁移工作流[^4]。该文档涵盖了从前期准备阶段直至后期效果评估环节在内的全部必要步骤说明。 #### 使用 Ollama 加速体验 另外,在某些场景下可能还会涉及到其他配套组件的选择问题,比如当决定尝试 Facebook Meta 推出的新一代序列预测框架 Llama 3.1 版本时,就可以借助名为 “Ollama” 的轻量化管理器来优化整体性能表现水平[^5]: ```bash # 安装ollama命令行工具 curl https://get.ollama.ai/install.sh | sh # 启动服务端口监听 ollama serve & ``` 以上脚本展示了如何迅速建立起一个基础环境以便后续接入更多高级特性选项。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值