卷积概念和应用

卷积是泛函分析中的重要运算,涉及函数的翻转、平移与积分。它与傅里叶变换密切相关,常用于信号处理、统计学、概率论及线性系统等领域。快速卷积算法通过FFT降低计算复杂度,卷积定理则揭示了时域与频域之间的关系。卷积还可推广到多元函数、数列、测度和广义函数上。
摘要由CSDN通过智能技术生成
 
Convolution of two square pulses: the resulting waveform is a triangular pulse. One of the functions (in this case g) is first reflected about \tau=0 and then offset by t, making it g(t-\tau). The area under the resulting product gives the convolution at t. The horizontal axis is \tau for f and g, and t for f\ast g.
Convolution of a square pulse (as input signal) with the impulse response of an RC circuit to obtain the output signal waveform. The integral of their product is the area of the yellow region. In both animations the function g is symmetric, and so is unchanged under reflection.

泛函分析中,卷积(捲積)、旋積摺積,是通过两个函数fg 生成第三个函数的一种数学算子,表征函数f 与经过翻转和平移的g 的重叠部分的累积。如果将参加卷积的一个函数看作区间指示函数,卷积还可以被看作是“滑动平均”的推广。

目录

[隐藏]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值