今天,阿里发布了最新的qwen系列模型-Qwen3。
并且开源8款模型,包括两款MoE模型:
Qwen3-235B-A22B(2350多亿总参数、 220多亿激活参数)
Qwen3-30B-A3B(300亿总参数、30亿激活参数)
以及六个Dense模型:
Qwen3-32B、Qwen3-14B、Qwen3-8B、Qwen3-4B、Qwen3-1.7B和Qwen3-0.6B。
满血版的混合专家模型Qwen3-235B-A22B,性能已全面超越OpenAI-o1、deepseek-R1、Grok 3 Beta、OpenAI-o3-mini,但是与Gemini2.5-Pro还有差距。
Qwen3-235B-A22B不仅性能全面超越deepseek-R1,与deepseek-R1(总参数671B,激活参数37B)相比,其总参数量只有deepseek的1/3,激活参数也只有deepseek的1/2。也就意味着部署成本将下降2/3,而且能够获得更好的性能。
Qwen3当之无愧开源模型NO1!用网络上最近流行的话说,压力再一次给到梁文峰。
小型混合专家模型Qwen3-30B-A3B,性能也大幅超越DeepSeek-V3,而这个参数差距就更大了,参数量相差20倍以上。意味着部署成本直接降到deepseek的1/20。
除了性能领先,看下它还有哪些新特性:
- 同一模型无缝切换思维模式
相当于把deepseek-r1和deepseek-v3合二为一了,只需要在指令里加上/think或者/nothink开启和关闭思考模式。 - 显著增强了其推理能力
在数学、代码生成和常识逻辑推理方面超越了之前的 QwQ(在think模式下)和 Qwen2.5 指令模型(在nothink模式下)。 - 更加适应人类偏好
在创意写作、角色扮演、多轮对话和指令执行方面表现出色,提供了更加自然、吸引人和沉浸式的对话体验。 - 在Agent能力方面的支持
能够在think和nothink模式下与外部工具精确集成,尤其是对于MCP协议的集成支持能力。 - 支持100多种语言和方言
具有强大的多语言指令执行和翻译能力。
好,我们先来体验一下吧:https://chat.qwen.ai/
快捷切换思维模式
当我们需要关闭思考模式,只需要在我的问题后面加上/nothink
这个功能我觉得很友好,能让我在同一个对话框方便切换思考/非思考模式。而它的背后是两个模型的合二为一,是成本的大幅下降。
Agent支持能力
接下来我们使用ollama来本地部署,方便测试。在ollama上面已经可以部署全部8个模型。
我选择部署32b模型,我的本地已经安装过ollama,在命令窗口直接运行:
ollama run qwen3:32b
接下来,我们在Cherry Studio中配置使用。
配置好后,我们就可以在Cherry Studio中来测试它的MCP工具调用能力了。
我已经打开了高德地图MCP工具,正常应该会触发调用工具查询天气。这里看来工具调用没有生效,开始胡说八道。
那我们就换种方式,Qwen官方也有自己的Agent SDK,我们来测试一下。
# pip install -U "qwen-agent[rag,code_interpreter,gui,mcp]"
from qwen_agent.agents import Assistant
from qwen_agent.gui import WebUI
# Define LLM
llm_cfg = {
'model': 'qwen3:32b', # Model name, can be customized
# Use a custom endpoint compatible with OpenAI API:
'model_server': 'http://localhost:11434/v1', # api_base
'api_key': 'EMPTY',
}
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
"amap-map": {
"url": "https://mcp.amap.com/sse?key=你在高德地图申请的api key",
"transport": "sse",
},
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Run the agent with GUI
WebUI(bot).run()
运行上面python代码后,使用浏览器访问:http://127.0.0.1:7860/
发送“武汉天气/nothink”,我们看到,Agent触发了工具调用,返回了天气数据。
注意需要用/nothink模式,才会触发工具调用。我测试时think模式对工具仍然无效。
目前测试下来,工具调用可以支持,但存在失效的情况,实际使用还需要进行适配。
写在最后
对于阿里新开源的模型Qwen3,用相对少的参数获得了更高的性能,将会进一步降低模型的使用成本。这将进一步促进大模型应用的发展。
同时,思考和非思考模式合二为一,不管对于使用体验还是部署成本也是一个重大的进步。
还有,工具调用支持能力,对于Agent极其重要。虽然在我的测试中存在瑕疵,相信官方版本中会解决这个问题。
好了,Qwen3的分享就到这里。今天的Qwen3力压deepseek,同样期待明天deepseek-R2的再次超越。
更多内容请关注公众号:深度探索AI应用