配对交易(一):期货品种相关性研究

配对交易定义

配对交易是一种基于数学分析交易策略,其盈利模式是通过两只证券的差价(spread)来获取,理论上可以做到和大盘走势完全无关。但其本质上是一种统计套利,也具有一定的风险性。

基本原理

配对交易的基本原理是,两个相似期货品种,其价格走势虽然在中途会有所偏离,但是最终都会趋于一致。配对交易就是利用这种价格偏离获取收益:当差价高于均值时,卖空涨得多的品种,差价小于均值时,买入涨得少的品种。具有这种关系的两个品种,在数学上称作协整性(cointegration),即它们之间的差价会围绕某一个均值来回摆动,这是配对交易策略可以盈利的基础。通俗点来讲,如果两个品种或者变量之间具有强协整性,那么不论它们中途怎么走的,它们的目的地总是一样的。

相关性分析

只有两个期货品种具有一定的相关性,那么对这两个品种做配对交易才有意义。那么首先就需要对各个品种做一个相关性分析。

那么要如何用Python对当前市场上所有的期货品种进行相关性分析呢?首先第一步,需要获取市场上所有的主力连续合约代码,在此之前当然还是我们熟悉的各种导入三方库。

import time
import numpy as np
import pandas as pd
%matplotlib inline
import seaborn
import matplotlib.pyplot as plt
import warnings; warnings.simplefilter('ignore') #忽略可能会出现的警告信息,警告并不是错误,可以忽略;
import akshare as ak
  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CSDN配对交易系列(一)基于copula是一个基于统计模型的配对交易策略。在金融交易中,配对交易是一种通过同时买进一个资产和卖出另一个相关资产的策略,通过利用两个或多个相关资产之间的关系来进行收益的套利。 Copula是一种用于描述多变量随机变量的联合分布函数的统计方法。它可以通过将每个随机变量的边际分布函数映射到一个统一的边际分布函数,并通过一个函数来捕捉它们之间的相关关系。 在基于copula的配对交易策略中,首先选择一对或多对相关资产。通过收集这些资产的历史价格数据,可以估计每个资产的边际分布函数。 然后,通过将每个资产的价格映射到统一的边际分布函数上,可以计算每个资产的统一百分位数。统一百分位数是指随机变量在该统一边际分布函数上的分位数。 接下来,通过确定每对资产之间的相关关系,可以使用copula函数来计算每个资产的联合百分位数。联合百分位数是指多个随机变量在copula函数下的联合分位数。 最后,根据每个资产的联合百分位数以及一些交易规则,可以决定是否进行买卖操作。通过利用相关资产之间的关系,可以在价格变化时进行买卖操作,从而实现收益的套利。 基于copula的配对交易策略可以利用多个相关资产之间的关系,提高投资组合的收益和风险管理。然而,这种策略也存在一些风险,比如高相关性环境下的系统性风险和误差估计带来的风险等。 总之,基于copula的配对交易策略是一种利用统计模型分析相关资产关系的交易策略,可以帮助投资者做出更明智的投资决策。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值