13.4 机器学习模型
在本项目中,选择使用LGBMRegressor作为预测价格的机器学习模型,并使用verstack进行调优处理。
(1)函数prediction 用于预测金价,并评估预测性能。首先,它创建一个数据集 data,包含目标列(col)的原始数据。然后,通过调用 Prepare_Data 函数,为目标列添加了滞后期、滚动统计和L-矩等特征。接着,对 'Open'、'Close'、'Volume' 以及与目标列互补的 'Low' 或 'High' 列进行同样的特征工程,最后将所有数据集合并成一个完整的数据集。随后,删除了因为滞后期特征引起的缺失值。接下来,定义训练数据并使用 LGBMTuner 进行超参数调整,最后对数据的最后90天进行预测,并输出预测结果、评估指标和模型调整的超参数。该函数可用于实现金价的