(13-4)黄金价格预测系统:构建机器学习模型

文章描述了一个使用LGBMRegressor进行金价预测的方法,通过特征工程生成滞后期、滚动统计和L-矩等特征,然后进行超参数调优。通过预测Low和High列的实例,展示模型性能和交易策略评估,包括均方误差和均方根误差等指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

13.4  机器学习模型

在本项目中,选择使用LGBMRegressor作为预测价格的机器学习模型,并使用verstack进行调优处理。

(1)函数prediction 用于预测金价,并评估预测性能。首先,它创建一个数据集 data,包含目标列(col)的原始数据。然后,通过调用 Prepare_Data 函数,为目标列添加了滞后期、滚动统计和L-矩等特征。接着,对 'Open'、'Close'、'Volume' 以及与目标列互补的 'Low' 或 'High' 列进行同样的特征工程,最后将所有数据集合并成一个完整的数据集。随后,删除了因为滞后期特征引起的缺失值。接下来,定义训练数据并使用 LGBMTuner 进行超参数调整,最后对数据的最后90天进行预测,并输出预测结果、评估指标和模型调整的超参数。该函数可用于实现金价的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值