(12-4-03)基于CPM中英双语多模态大模型的文生图系统:实现模型(3)基于Stable Diffusion的图像生成模型+多模态模型

12.5.5  基于Stable Diffusion的图像生成模型

文件stablediffusion.py用于实现一个基于Stable Diffusion的图像生成模型,此文件通过定义一个包含自动编码器、噪声调度器、UNet条件模型以及自定义转换块的SDWrapper类,支持图像的编码、添加噪声、降噪和解码过程。同时,该类还集成了图像安全检查器,用于检测生成图像中的不适宜内容。此外,SDWrapper类支持通过提供文本嵌入来指导图像生成,并能够在推理时根据给定的指导比例进行噪声预测和图像生成。

class CPMBeeTransBlock(torch.nn.Module):
    def __init__(
        self,
        dim_model=4096,
        dim_ff=1024,
        dim_out=768,
        dtype=torch.float,
        eps=1e-6,
        dropout_p=0,
    ):
        super().__init__()
        if dropout_p is not None:
            self.dr
### 关于文本生成像的深度学习技术及相关论文 随着深度学习的发展,文本生成像(Text-to-Image Synthesis)成为计算机视觉和自然语言处理交叉领域的重要研究方向之一。以下是几个重要的技术路线及其相关论文: #### 1. 基础理论与卷积神经网络 文本生成像的核心在于理解文本语义并将之映射到像素空间。为此,卷积神经网络 (CNN) 是一种常用的技术工具[^1]。它通过多层次结构提取像的空间特征,并结合生成对抗网络 (GAN) 或变分自编码器 (VAE)实现了高质量像的生成。 #### 2. 扩散模型及其应用 扩散模型是一种新兴的概率建模方法,在文本生成像任务中表现出卓越性能。其基本原理是从噪声中逐步恢复目标分布,从而生成逼真的像。以下是一些重要研究成果: - **GLIDE**: 提出了基于条件扩散模型的方法,用于高分辨率图像生成[^2]。 - **Imagen**: 结合大型预训练语言模型,显著提升了生成像的质量和多样性。 - **Stable Diffusion**: 开源框架,允许用户灵活调整生成过程中的参数设置。 - **DALL·E2**: 改进了原始版本,增强了跨模态理解和生成能力。 #### 3. 中英双语多模态大模型的应用 针对中文环境下的需求,一些研究团队开发了专门适用于汉语场景的文生系统。例如 CPM实现方案提供了丰富的辅助功能模块,如 `VLLMCPMBeeGeneration` 类负责从像特征推导出对应的描述性文本[^3]。这种双向交互机制不仅促进了单向生成任务的进步,也为更复杂的创意设计奠定了基础。 对于希望深入探索该领域的研究人员来说,可以从以下几个方面入手查找相关资料: - 访问知名学术数据库如 arXiv, IEEE Xplore 等检索关键词 “text to image synthesis”, “diffusion models”; - 查阅顶级会议 CVPR, ICCV 上发表的文章了解最新进展; - 参考具体项目文档获取开源代码和技术细节说明链接地址。 ```python import torch from diffusers import StableDiffusionPipeline model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id) prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` 上述代码片段展示了如何利用 PyTorch 加载预训练好的稳定扩散管道实例化对象,并指定提示词完成一张火星上骑马宇航员照片样式的片创建操作流程演示效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值