目录
文章概览
推文改编自实验室最新综述论文《智慧教育中的大语言模型综述》,该论文发表于《智能系统学报》。《智能系统学报》是中国人工智能学会会刊、“中国人工智能学会推荐中文学术期刊”列表中的A类期刊。
文献来源:
肖建力,黄星宇,姜飞. 智慧教育中的大语言模型综述[J]. 智能系统学报,DOI:10.11992/tis.202406040
XIAO Jianli, HUANG Xingyu, JIANG Fei. A survey of large language models in smart education [J]. CAAI transactions on intelligent systems, DOI:10.11992/tis.202406040
论文下载地址:
(1)百度网盘下载
https://pan.baidu.com/s/1MajcEx0HIM43T5_wPe8iFg?pwd=am24
(2)知网下载
https://kns.cnki.net/kcms2/article/abstract?v=e9e-pYHXmff_jcKd3ywHuIUh0-a9q8FMDEcRoowlLMgcKUAx672vsBKldDp9aT0Oz-l_y99WiY0XbQeKnMf-JidLKFw-zBgBXFJ_XnK9XsLQnBhuonNXSUZoMpGgK2y02j9lZdF8FpYKukQapSFWwZ7umfsrQUQqTwhNie-rVkUN0o0xjThyAIqd9oFMU-Rk&uniplatform=NZKPT&language=CHS
1. 教育大模型是什么
教育大模型是大语言模型与教育深度融合的产物。它借助大语言模型的能力,通过大规模数据集训练而成,具备多种特性与功能。在特点方面,能为学生定制个性化学习路径,依据其知识水平、风格和兴趣量身打造;也可以自动生成丰富的学习资源,并且进行动态调整;支持跨模态交互,来适应不同输入输出形式;能够精准诊断学习状况,为教学双方提供有力支持;还提供全周期学习服务,涵盖学生各阶段及职业发展需求。在应用上,涵盖垂直领域如星火语伴、EduChat等在特定教育场景发挥作用,以及通用领域如ChatGPT和GPT4在多学科教育中的应用,虽存在局限,但总体为教育带来更多可能与变革,推动教育朝着智能化、个性化方向发展。
2. 教育大模型的特点
大语言模型的特点、教育的特点以及融合而成的教育大模型的特点,如图1所示。
图1 教育大模型的特点
定制化学习路径:通过分析大数据,依据学生知识水平、学习风格和兴趣点,为每位学生量身定制高效且个性化的学习路径,满足不同学生需求,提升学习效果。
自动生成学习资源:具备强大的生成能力,可自动生成各类学习资源,如试题、习题解析、课程内容等,并能根据课程进度动态调整,为教师和学生提供丰富、便捷的学习材料。
跨模态交互能力:部分模型支持处理文字、图像、语音等多种输入和输出形式,如在自然科学课程中,学生可通过图像输入实验数据获取模型解释,还可语音提问回答,模拟真实课堂互动,适合不同学生群体,增强学习体验。
精准学习诊断:能够对学生学习数据进行深度分析,精准识别知识薄弱点,生成详细的分析报告,帮助教师进行针对性教学,有效提高学习效率,避免资源浪费。
全周期学习支持:不仅服务于在校学生,还为终身学习者提供持续支持,可根据职业发展需求和个人兴趣提供个性化学习资源,助力职场人士提升竞争力,确保学习在不同阶段的连续性和灵活性。
3. 教育大模型的应用
教育大模型的广泛应用为个性化学习带来了更多可能性,使得学习过程更加高效、互动性更强,表1列举了教育大模型的一些应用。
表1 教育大模型的应用
名称 | 研发团队 | 使用大模型 | 是否开源 | 特点和优势 | 适用范围 |
科大讯飞 | 讯飞星火认知大模型 | 是 | 支持多模态交互,具备中英文口语评测、语法纠错及文本问答功能,适合中文学习和口语训练场景 | 语言学习、口语练习、文本问答、考试模拟 | |
EduChat | 华东师范大学 | LLaMA/ Baichuan | 是 | 智能问答、作文批改、启发式教学和情感支持,具备检索增强技术,实时更新知识库确保最新内容 | K-12及高校教育、心理支持、作文评估 |
智海-三乐 | 阿里云 | 通义千问(7B) | 是 | 提供多学科支持,包含搜索、计算引擎和知识库功能,辅助高校课程和AI助教 | 高等教育课程辅助、AI助教 |
子曰 | 网易有道 | 自研大模型 | 否 | 多模态知识整合,提供个性化学习建议,模拟教师引导学生自我探索,满足不同学习需求 | 全阶段教育支持、翻译、作文指导 |
MathGPT | 好未来 | 自研大模型 | 否 | 专注于数学领域,具备高精确度的解题步骤分析,能详细讲解题目,帮助学生在数学学习中构建清晰思维 | 数学教学、解题演示、题目解析 |
智适应教育大模型 | 松鼠Ai | 自研大模型 | 否 | 聚焦个性化学习,自适应调整教学内容,同时提供情绪支持,帮助学生在良好心态下学习 | K-12教育、自适应学习、心理支持 |
看云大模型 | 猿辅导 | 自研大模型 | 否 | 涵盖K-12阶段多学科辅导,具备实时答疑功能,帮助学生在课堂外及时解决疑问和巩固知识 | K-12教育、题目解析、实时答疑 |
汇雅大模型 | 超星集团 | 自研大模型 | 否 | 支持在线学习资源管理,整合数字图书馆内容,便于高校师生查阅和管理,适用于教育资源丰富的环境 | 高等教育、在线学习、教育资源管理 |
Duolinguo Max | 多邻国 | GPT-4 | 否 | 增强的个性化互动体验,支持多语言学习,提供实时反馈,适合语言学习者提高听、说、读、写各方面技能 | 语言学习(多语言)、个性化练习 |
Khanmigo | 可汗学院 | GPT-4 | 否 | 适用于科学和数学教育,提供个性化学习建议和详细解答,帮助学生加深对学科概念的理解和应用 | 科学和数学教育、个性化辅导 |
星火语伴:科大讯飞的星火语伴APP搭载讯飞星火认知大模型,支持多模态交互,提供中英文口语评测、语法纠错及文本问答功能,适用于语言学习和口语训练场景,可帮助学生提高口语水平。
EduChat:华东师范大学的EduChat基于LLaMA和Baichuan,具备智能问答、作文批改、启发式教学和情感支持等功能,通过检索增强技术确保知识准确性,可应用于K-12及高校教育,为学生提供学习帮助和心理支持。
智海-三乐:浙江大学的 “智海-三乐” 基于阿里云通义千问开发,有搜索、计算引擎和知识库功能,可辅助高校课程,作为AI助教为学生提供24小时个性化学习支持,推动产教融合。
子曰:网易有道的 “子曰” 模型能提供个性化学习建议,模拟教师引导学生自主探索,支持多模态知识整合,适用于全阶段教育,可在翻译、作文指导等多方面发挥作用。
MathGPT:好未来的 MathGPT专注数学领域,解题准确率高、步骤清晰且讲解详细,有助于学生构建数学思维,可用于数学教学、解题演示和题目解析。
智适应教育大模型:松鼠Ai的智适应教育大模型融合多模态技术,关注学生情绪,提供个性化学习服务,能提高学习效率,适用于K-12教育,帮助学生在良好心态下学习。
看云大模型:猿辅导的看云大模型涵盖K-12阶段多学科辅导,能实时答疑,帮助学生巩固知识,提升个性化学习和互动体验。
汇雅大模型:超星集团的汇雅大模型参数量达340亿,训练资源丰富,具备多种核心功能,支持多样化教育场景,可用于在线学习资源管理、查重和学术管理等,助力智慧校园建设。
Duolinguo Max和Khanmigo:多邻国的Duolinguo Max和可汗学院的Khanmigo都基于GPT4开发,能够提供增强的个性化互动体验,支持多语言学习,实时反馈,有助于提高语言学习者听、说、读、写技能。
4. 教育大模型的训练
目前以OpenAI为首的大语言模型的构建主要包括四个阶段:数据预处理、无监督预训练、有监督微调、模型评估与测试。同样教育大模型的构建方法类似,主要是在微调部分进行变动,如图2所示。
图2 教育大模型构建流程
1. 数据预处理
数据预处理是训练教育大模型的关键第一步,其目的是为模型提供高质量且干净的输入数据。首先,需要从多种渠道收集数据,包括公开数据集(如Wikipedia、Common Crawl)以及教育领域的专用数据(如教材、题库和考试记录)。接下来,通过清洗、去噪和标注步骤剔除低质量或敏感内容,以确保数据的准确性和一致性。此外,还需对数据进行格式化处理(如分词、去除多余符号)以及数据增强操作,生成多样化的训练样本,为模型的后续训练奠定扎实的基础。
2. 无监督预训练
无监督预训练阶段旨在帮助模型学习语言的基本特性和上下文关系。首先,利用大规模未标注的通用数据(如Common Crawl和Pile)进行训练,使模型掌握语言结构与语义规律。随后,加入教育领域的专用数据(如学生答疑记录和课程材料),对模型进行领域适配,提升其在教育任务中的表现。通过掩码语言建模或下一个单词预测等任务,优化模型的权重,使其具备广泛的语言理解与生成能力,为教育场景中的应用打下坚实的基础。
3. 有监督微调
有监督微调阶段聚焦于让模型适应具体的教育任务。首先,需要准备高质量、带明确标签的数据集(如作文评分样本或试题答案解析)作为微调数据。为了减少计算资源的消耗,通常采用高效的微调方法,如LoRA(低秩适配)或Adapter Tuning,仅调整模型的一部分参数。微调的重点是根据目标任务(如个性化学习推荐或情感支持)优化模型权重,从而使其在教育领域内展现出更强的针对性与实用性。
4. 模型评估与测试
最后一步是对模型进行全面的评估与测试,以确保其性能符合教育领域的实际需求。通过权威的教育测试数据集(如C-Eval和GSM8K),可以评估模型在知识覆盖、推理能力和生成质量等方面的表现。从准确性、流畅性到情感支持能力等多个维度进行全面考察,并通过迭代优化不断改进模型在特定任务中的不足。评估结果不仅是模型实际应用效果的直接体现,还为后续的改进提供了重要的指导方向。
5. 教育大模型的机会与挑战
1. 局限性
教育大模型在教育领域的应用日益广泛,但仍面临诸多局限性。首先,模型的理解与推理能力有限,主要依赖统计模式,难以胜任复杂的逻辑推理或创造性任务。其次,知识更新滞后,使其无法及时提供最新的学术和技术信息。此外,模型可能生成不准确甚至错误的信息(即“幻觉”现象),容易导致学生被误导。内容偏见问题同样突出,可能反映性别、种族或文化偏见,从而影响教育公平性。同时,数据隐私与安全仍是亟待解决的难题,学生的敏感信息可能面临泄露或滥用的风险。最后,教育大模型对高计算资源和专业技术的依赖,使得资源有限的教育机构难以广泛应用这些技术。这些局限性为教育大模型的进一步发展提出了新的挑战。
2. 展望
未来,教育大模型有望推动更加智能、互动和个性化的学习环境。通过提升自然语言处理能力,模型将更精准地理解学生需求,提供个性化反馈。多模态技术的广泛应用将整合文本、图像、声音和视频等多种数据形式,为学生打造沉浸式学习体验,激发学习兴趣并提升学习效果。同时,隐私保护技术如端到端加密和联邦学习的采用,将有效确保数据的安全性和可靠性。通过优化模型架构并利用云计算与边缘计算技术,教育资源的覆盖范围将进一步扩大,整体使用成本大幅降低。此外,教育大模型将与教师深度协作,辅助教学设计与评估,提升课程创新和教学质量。更重要的是,这些技术的公平性将助力消除教育不平等,全面推动教育水平的提升与普及。