基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

(完整程序运行后无水印)

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

...........................................................................

figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');
 
 
[V,I] = min(JJ);
X     = phen1(I,:);
 
 
 
%设置网络参数 
%卷积核
Nfilter = floor(X(1));%8;  
%卷积核大小
Sfilter = floor(X(2));%5;     
%丢失因子
drops   = X(3);%0.025;  
%残差块
Nblocks = floor(X(4));%4;       
%特征个数
Nfeats  = Dims;      
 
%训练
[net,INFO] = trainNetwork(Ptrain_reshape, Ttrain_reshape, lgraph, options);
 
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
 
 
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on
    
subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
 
 
 
%仿真预测
tmps   = predict(net, Ptest_reshape ); 
T_pred = double(tmps{1, 1});
%反归一化
T_pred = mapminmax('reverse', T_pred, vmax2);
ERR    = mean(abs(T_test-T_pred));
ERR
 
figure
plot(T_test, 'b','LineWidth', 1)
hold on
plot(T_pred, 'r','LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on
 
figure
plotregression(T_test,T_pred,['回归']);
 
save R2.mat Rerr Rlos T_test T_pred ERR Error2
199

4.算法理论概述

       时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。遗传算法(GA)作为一种强大的全局优化算法,能够在复杂的搜索空间中找到接近最优的解,将其应用于 TCN 的超参数优化,可以进一步提高 TCN 的预测性能,从而实现更准确、可靠的时间序列预测。

     TCN 主要由一系列的因果卷积层(Causal Convolution Layer)和残差连接(Residual Connection)组成。

因果卷积

残差连接

适应度函数

      适应度函数用于评估每个染色体(即一组 TCN 超参数设置)的优劣。在时间序列预测任务中,通常以预测误差作为适应度函数的基础。例如,可以使用均方误差(MSE)作为适应度函数的一部分:

       对于种群中的每一个染色体(即一组超参数设置),构建相应的 TCN-GRU模型,并使用训练集数据对其进行训练。训练过程中采用合适的损失函数(如前面提到的基于预测误差的函数)和优化算法(如 Adam 等)来调整 TCN-GRU的权重参数。训练完成后,使用测试集数据对 TCN-GRU模型进行评估,计算其适应度值(如基于预测误差的适应度函数)。              

       经过多次迭代后,选择适应度值最高的染色体所对应的 TCN-GRU超参数设置,使用这些超参数构建最终的 TCN-GRU模型,并使用全部的训练数据对其进行重新训练,得到优化后的 TCN-GRU时间序列预测模型。

5.算法完整程序工程

OOOOO

OOO

O

内容概要:本文详细介绍了一个结合粒子群优化(Particle Swarm Optimization, PSO),卷积神经网络(Convolutional Neural Network, CNN),以及双向门控循环单元(Bi-directional Gated Recurrent Unit, BiGRU)的复合深度学习模型,用于处理和预测具有高维特性的多变量时间序列数据。该模型旨在提高对多变量时间序列的解释能力和预测精准度,特别是在金融市场的股票走势预估,以及交通管理和能源消耗等领域。文中包含了从环境搭建,参数调节到模型评估的一整套实施流程,并给出了完整的实现细节及图形界面(GUI)的设计方案,使读者可以从零开始复现整个项目。 适合人群:对深度学习有一定了解并且有兴趣从事或深入研究时间序列预测的研究人员和技术人员。特别适用于那些希望通过案例学习,加深对PSO、CNN、BiGRU及其实现方式理解的人群。 使用场景及目标:适用于多变量的时间序列数据分析与建模,特别是在金融市场,运输系统和其他需要长短期记忆机制结合的空间特征捕捉场景下。目标是以更低的成本实现更高精度预测,支持业务发展。 其他说明:该文档还讨论了数据预处理方法,如归一化和填充缺失值等方面的知识,确保即使是初学者也能顺利完成项目部署。此外,文档还探讨了一些可能遇到的问题及解决方案,比如如何避免局部最优问题和减少过拟合的可能性。最终,文档演示了通过图形界面让用户更容易上手的方式来进行实验设计,同时保证了良好的用户体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值