一 特征值与特征向量
二 相似变换
2.1 应用于机器人外参
摄像机外参:决定摄像机坐标与世界坐标系之间相对位置关系。
其中Pw为世界坐标,Pc是摄像机坐标,他们之间关系为
Pc = RPw + T
式中,T= (Tx,Ty,Tz),是平移向量,R = R(α,β,γ)是旋转矩阵,分别是绕摄像机坐标系z轴旋转角度为γ,绕y轴旋转角度为β,绕x轴旋转角度为α。6个参数组成(α,β,γ,Tx,Ty,Tz)为摄像机外参。
对于我们扫地机,外参解决的是相机不在机器中心的时候,相机坐标系与机器的坐标系的转换关系。就是Rbc,tbc。
相似变换在这里的用法:camera_motion = Tbc.inverse() * robot.mition * Tbc。
三. 旋转矩阵
旋转矩阵(英语:Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果并保持了手性的矩阵。
在二维空间中,旋转可以用一个单一的角 定义。作为约定,正角表示逆时针旋转。把笛卡尔坐标的列向量关于原点逆时针旋转的矩阵是:
二维空间,坐标系的旋转:
假设已知基坐标系XOY中的一点P(x,y),坐标原点为O,绕点O旋转θ,可以求得点P在新坐标系X'OY'中坐标值(x',y'),如下图所示:
3.1 正交矩阵特性
3.2. 三维空间
四. 平移矩阵
五. 矩阵分解
5.1 SVD分解
5.1.1 SVD的应用
1 主成分分析。
2 SVD求解最小二乘法的解。如VINS和ORB中,三角测量求特征点深度,都用的此方法。
3 对极几何、ICP中,求解R矩阵,t矩阵。