马氏距离(Mahalanobis Distance)与欧式距离

马氏距离是距离度量的一种,解决了欧式距离在高维线性分布数据中维度尺度不一致和相关性问题。通过协方差矩阵调整,使数据点在各维度上独立同分布。马氏距离在处理身高、体重等不同尺度数据时更具优势,并在主成分分析后能更好地识别离群点。然而,马氏距离要求协方差矩阵满秩且适用于线性空间,无法处理非线性流形问题。
摘要由CSDN通过智能技术生成

马氏距离(Mahalanobis Distance)是度量学习中一种常用的距离指标,同欧氏距离、曼哈顿距离、汉明距离等一样被用作评定数据之间的相似度指标。但却可以应对高维线性分布的数据中各维度间非独立同分布的问题。


什么是马氏距离

马氏距离(Mahalanobis Distance)是一种距离的度量,可以看作是欧氏距离的一种修正,修正了欧式距离中各个维度尺度不一致且相关的问题。

单个数据点的马氏距离

数据点x, y之间的马氏距离

其中Σ是多维随机变量的协方差矩阵,μ为样本均值,如果协方差矩阵是单位向量,也就是各维度独立同分布,马氏距离就变成了欧氏距离。

马氏距离实际意义

那么马氏距离就能能干什么?它比欧氏距离好在哪里?举几个栗子

欧式距离近就一定相似?

先举个比较常用的例子,身高和体重,这两个变量拥有不同的单位标准,也就是有不同的scale。比如身高用毫米计算,而体重用千克计算,显然差10mm的身高与差10kg的体重是完全不同的。但在普通的欧氏距离中,这将会算作相同的差距。

归一化后欧氏距离近就一定相似?

当然我们可以先做归一化来消除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值