考研数学易错知识点总结

考研数学易错知识点总结

1.极限部分
  • ​判断正确与否:若 { a n } \left\{a_{n}\right\} {an}收敛,则有 lim ⁡ n → ∞ ( a n + 1 − a n ) = 0 \lim \limits_{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0 nlim(an+1an)=0 lim ⁡ n → ∞ a n + 1 a n = 1 \lim \limits_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1 nlimanan+1=1

    第一项正确,第二项不正确,例如 a n a_n an=0

  • 问:收敛数列是否一定是单调数列?无穷小量是否一定是单调数列?

    不一定,反例都可以举 a n = ( − 1 2 ) n a_n=(-\frac{1}{2})^n an=(21)n

  • 问:正无穷大数列是否一定单调增加?无界数列是否一定是无穷大量?

    都不一定,前者反例 1 , 1 2 , 2 , 2 , ⋯   , n , n 2 , ⋯ 1,1^2,2,2^,\cdots,n,n^2,\cdots 1,12,2,2,,n,n2,, 后者反例 1 , 2 , 1 , 3 , ⋯   , 1 , n , ⋯ 1,2,1,3,\cdots,1,n,\cdots 1,2,1,3,,1,n,

  • 问:如果数列 { a n } \left\{a_{n}\right\} {an}收敛于 a a a,那么绝对值 ∣ a n − a ∣ \left|a_{n}-a\right| ana是否随着 n n n的增加而单调减少趋于0?

    不一定,例如数列 a n = ( − 1 ) n + n n − 2 a_n=\frac{(-1)^n+n}{n-2} an=n2(1)n+n,数列 a n a_n an收敛于1,但是 ∣ a n − 1 ∣ = ( − 1 ) n + 2 n − 2 |a_n-1|=\frac{(-1)^n+2}{n-2} an1=n2(1)n+2,此数列并不是单调的。

  • { a n } \left\{a_{n}\right\} {an} { b n } \left\{b_{n}\right\} {bn}均发散,但是 { a n + b n } \left\{a_{\mathrm{n}}+b_{\mathrm{n}}\right\} {an+bn}不一定发散。
    例如: { a n } = { ( − 1 ) n } \left\{a_{\mathrm{n}}\right\}=\left\{(-1)^{\mathrm{n}}\right\} {an}={(1)n}, { b n } = { ( − 1 ) n + 1 } \left\{b_{\mathrm{n}}\right\}=\left\{(-1)^{\mathrm{n+1}}\right\} {bn}={(1)n+1}或者 a n = n , b n = − n a_n=n,b_n=-n an=n,bn=n

  • { a n } \left\{a_{n}\right\} {an} { b n } \left\{b_{n}\right\} {bn}均发散,但是 { a n b n } \left\{a_{\mathrm{n}}b_{\mathrm{n}}\right\} {anbn}不一定发散。
    例如: { a n } = \left\{a_{n}\right\}= {an}= { 1 + ( − 1 ) n 2 } \left\{\frac{1+(-1)^{n}}{2}\right\} {21+(1)n} , { b n } = \left\{b_{n}\right\}= {bn}= { 1 − ( − 1 ) n 2 } \left\{\frac{1-(-1)^{n}}{2}\right\} {21(1)n}

  • { a n } \left\{a_{n}\right\} {an} { b n } \left\{b_{n}\right\} {bn}有一个收敛,另一个发散,则 { a n b n } \left\{a_{\mathrm{n}}b_{\mathrm{n}}\right\} {anbn}的敛散性不定。

  • a n > b n ( n = 1 , 2 , ⋯   ) a_{n}>b_{n}(n=1,2, \cdots) an>bn(n=1,2,),但不一定有 lim ⁡ x → ∞ a 0 > lim ⁡ x → ∞ b 0 \lim \limits_{x \rightarrow \infty} a_{0}>\lim \limits_{x \rightarrow \infty} b_{0} xlima0>xlimb0(假设极限都存在)
    例如: a n = 2 n , b n = 1 n ( n = 1 , 2 , ⋯   ) a_{n}=\frac{2}{n},b_{n}=\frac{1}{n}(n=1,2, \cdots) an=n2,bn=n1(n=1,2,) ,但是 lim ⁡ n → ∞ a n = lim ⁡ n → ∞ b n = 0 \lim \limits_{n \rightarrow \infty}a_{n}=\lim \limits_{n \rightarrow \infty} b_{n}=0 nliman=nlimbn=0

  • a n ⩽ b n ⩽ c n , n ∈ N + a_{n} \leqslant b_{n} \leqslant c_{n}, n \in \mathbf{N}_{+} anbncn,nN+,已知 lim ⁡ n → ∞ ( c n − a n ) = 0 \lim \limits_{n \rightarrow \infty}\left(c_{n}-a_{n}\right)=0 nlim(cnan)=0,问数列 { b n } \left\{b_{n}\right\} {bn}是否收敛?
    不一定,取 a n = b n = c n = n a_n=b_n=c_n=n an=bn=cn=n,可知实际上 b n b_n bn是发散的。

  • ​设已知 lim ⁡ n → ∞ a n = 0 \lim \limits_{n \rightarrow \infty} a_{n}=0 nliman=0,问是否有 lim ⁡ n → ∞ ( a 1 a 2 ⋯ a n ) = 0 ? \lim \limits_{n \rightarrow \infty}\left(a_{1} a_{2} \cdots a_{n}\right)=0 ? nlim(a1a2an)=0?,反之如何?
    ∣ a 1 a 2 a 3 ⋯ ∣ = ∣ a 1 ⋯ a N ∣ ∣ a N + 1 ⋯ a n ∣ < ∣ a 1 a 2 ⋯ a n ∣ ε n − N |a_1 a_2 a_3 \cdots|=|a_1 \cdots a_N||a_N+1 \cdots a_n|<|a_1 a_2 \cdots a_n|{\varepsilon}^{n-N} a1a2a3=a1aNaN+1an<a1a2anεnN即证

    但是反之,取 a n = 1 , 1 2 , 1 , 1 3 , ⋯   , 1 , 1 n , ⋯ a_n=1,\frac{1}{2},1,\frac{1}{3},\cdots,1,\frac{1}{n},\cdots an=1,21,1,31,,1,n1,

  • y n ⩽ x n ⩽ z n y_{n} \leqslant x_{n} \leqslant z_{n} ynxnzn,同时 lim ⁡ ( z n − y n ) = 0 \lim \left(z_{n}-y_{n}\right)=0 lim(znyn)=0,则不一定能推出 lim ⁡ n → ∞ x n \lim\limits_{n \rightarrow \infty} x_{n} nlimxn存在,这是因为 lim ⁡ n → ∞ ( z n − y n ) = 0 \lim\limits_{n \rightarrow \infty}\left(z_{n}-y_{n}\right)=0 nlim(znyn)=0不能推出 lim ⁡ n → ∞ y n \lim\limits_{n \rightarrow \infty} y_{n} nlimyn lim ⁡ n → ∞ z n \lim\limits_{n \rightarrow \infty} z_{n} nlimzn存在,例如 x n = n , y n = n − 1 n , z n = n + 1 n x_{n}=n, y_{n}=n-\frac{1}{n}, z_{n}=n+\frac{1}{n} xn=n,yn=nn1,zn=n+n1

  • y n ⩽ a ⩽ x n y_{n} \leqslant a \leqslant x_{n} ynaxn同时 lim ⁡ n → ∞ ( z n − y n ) = 0 \lim\limits_{n \rightarrow \infty}\left(z_n-y_{n}\right)=0 nlim(znyn)=0,则有 lim ⁡ y n = lim ⁡ x n = a \lim y_{n}=\lim x_{n}=a limyn=limxn=a,这是因为由于 y n ⩽ a ⩽ x n y_{n} \leqslant a \leqslant x_{n} ynaxn,则有 0 ≤ a − y n ⩽ z n − y n 0 \leq a-y_{n} \leqslant z_{n}-y_{n} 0aynznyn,由于 lim ⁡ n → ∞ ( z n − y n ) = 0 \lim\limits_{n \rightarrow \infty}\left(z_n-y_{n}\right)=0 nlim(znyn)=0,根据夹逼准则,于是有 lim ⁡ m → ∞ ( a − y n ) = 0 \lim\limits_{m \rightarrow \infty}\left(a-y_{n}\right)=0 mlim(ayn)=0,即 lim ⁡ y n = a \lim y_{n}=a limyn=a,同理有 y n − z n ⩽ a − z n ⩽ 0 y_{n}-z_{n} \leqslant a-z_{n} \leqslant 0 ynznazn0,也即 lim ⁡ n → ∞ z n = a \lim\limits_{n \rightarrow \infty} z_{n}=a nlimzn=a

  • 并不是任意两个无穷小都可以进行比较阶的,例如当 x → 0 x \rightarrow 0 x0时, x sin ⁡ 1 x x\sin{}\frac{1}{x} xsinx1 x 2 x^2 x2都是无穷小,但是却不可以进行比阶,因为 lim ⁡ x → 0 x sin ⁡ 1 x x 2 = lim ⁡ x → 0 1 x sin ⁡ 1 x \lim\limits_{x \rightarrow 0} \frac{x \sin \frac{1}{x}}{x^{2}}=\lim\limits_{x \rightarrow 0} \frac{1}{x} \sin \frac{1}{x} x0limx2xsinx1=x0limx1sinx1不存在。

  • x → 0 x \rightarrow 0 x0时, f ( x ) f(x) f(x)为无穷小,也不一定有 sin ⁡ [ f ( x ) ] ∼ f ( x ) \sin [f(x)] \sim f(x) sin[f(x)]f(x),例如对于 sin ⁡ ( x sin ⁡ 1 x ) \sin \left(x \sin \frac{1}{x}\right) sin(xsinx1) x sin ⁡ 1 x x \sin \frac{1}{x} xsinx1,在 x = 0 x=0 x=0的任一小的去心邻域内,总有 x = 1 k π → 0 x=\frac{1}{k \pi} \rightarrow 0 x=kπ10,使得 sin ⁡ ( x sin ⁡ 1 x ) x sin ⁡ 1 x \frac{\sin \left(x \sin \frac{1}{x}\right)}{x \sin \frac{1}{x}} xsinx1sin(xsinx1)在该点没有定义,导致上述极限不存在。

  • 有限多个无穷小的乘积为无穷小,对于函数

f n ( x ) = { 1 , x < n n [ x ] − n + 1 , x ⩾ n n = 1 , 2 , 3 , ⋯   f_{n}(x)=\left\{\begin{array}{ll} {1,} & {x<n} \\ {\frac{n}{[x]-n+1},} & {x \geqslant n} \end{array} \quad n=1,2,3, \cdots\right. fn(x)={1,[x]n+1n,x<nxnn=1,2,3,

我们有
F ( x ) = lim ⁡ n → ∞ ∏ i = 1 n f i ( x ) = ∏ i = 1 n = 1 f i ( x ) lim ⁡ n → ∞ ∏ i = 1 n f i ( x ) = 1 [ x ] ∏ i = 2 ( x ) f i ( x ) = 1 [ x ] ⋅ 2 [ x ] − 1 ⋅ 3 [ x ] − 2 ⋅ ⋯ ⋅ [ x ] − 2 3 ⋅ [ x ] − 1 2 ⋅ [ x ] = 1 ≠ 0 \begin{aligned} F(x) &=\lim _{n \rightarrow \infty} \prod_{i=1}^{n} f_{i}(x)=\prod_{i=1}^{n=1} f_{i}(x) \lim _{n \rightarrow \infty} \prod_{i=1}^{n} f_{i}(x)=\frac{1}{[x]} \prod_{i=2}^{(x)} f_{i}(x) \\ &=\frac{1}{[x]} \cdot \frac{2}{[x]-1} \cdot \frac{3}{[x]-2} \cdot \cdots \cdot \frac{[x]-2}{3} \cdot \frac{[x]-1}{2} \cdot[x]=1 \neq 0 \end{aligned} F(x)=nlimi=1nfi(x)=i=1n=1fi(x)nlimi=1nfi(x)=[x]1i=2(x)fi(x)=[x]1[x]12[x]233[x]22[x]1[x]=1=0

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值