反证法判断数列发散

判断数列发散有以下几种方法:

  • 无界数列一定发散
  • 有一个发散子列的数列一定发散
  • 如果两个子列不收敛于同一个数列,那么这个数列发散
  • 柯西收敛准则也是判定数列发散的充分必要条件

总的来说,就是先假定数列收敛,然后设其极限为A,然后导出矛盾即可

例1:证明数列 { sin ⁡ n } \{\sin n\} {sinn}发散。
证明:设存在 lim ⁡ n → ∞ sin ⁡ n = a \lim \limits_{n \rightarrow \infty} \sin n=a nlimsinn=a,则有 lim ⁡ n → ∞ ( sin ⁡ ( n + 2 ) − sin ⁡ ( n ) ) = 0 \lim \limits_{n \rightarrow \infty}(\sin (n+2)-\sin (n))=0 nlim(sin(n+2)sin(n))=0,由于 sin ⁡ ( n + 2 ) − sin ⁡ n = 2 sin ⁡ 1 cos ⁡ ( n + 1 ) \sin (n+2)-\sin n=2 \sin 1 \cos (n+1) sin(n+2)sinn=2sin1cos(n+1),所以 lim ⁡ n → ∞ cos ⁡ ( n + 1 ) = 0 \lim \limits_{n \rightarrow \infty} \cos (n+1)=0 nlimcos(n+1)=0,由于 cos ⁡ ( n + 1 ) = cos ⁡ n cos ⁡ 1 − sin ⁡ n sin ⁡ 1 \cos (n+1)=\cos n \cos 1-\sin n \sin 1 cos(n+1)=cosncos1sinnsin1,这又导出 lim ⁡ n → ∞ sin ⁡ n = 0 \lim \limits_{n \rightarrow \infty} \sin n=0 nlimsinn=0,但是这与恒等式 sin ⁡ 2 n + cos ⁡ 2 n = 1 \sin ^{2} n+\cos ^{2} n=1 sin2n+cos2n=1矛盾。
补充:根据这个方法也可以证明 { tan ⁡ n } \{\tan n\} {tann}发散

例2:设 x 1 = c 2 , x n + 1 = c 2 + x n 2 2 , n ∈ N + x_{1}=\frac{c}{2}, x_{n+1}=\frac{c}{2}+\frac{x_{n}^{2}}{2}, n \in \mathbf{N}_{+} x1=2c,xn+1=2c+2xn2,nN+,证明:若 c > 1 c>1 c>1,则 { x n } \left\{x_{n}\right\} {xn}发散
证明:若数列 { x n } \left\{x_{n}\right\} {xn}收敛,假设其极限为A,根据递推式 x n + 1 = c 2 + x n 2 2 x_{n+1}=\frac{c}{2}+\frac{x_{n}^{2}}{2} xn+1=2c+2xn2,两边令 n → ∞ n \rightarrow \infty n,就可以得到:
A = c 2 + A 2 2 A=\frac{c}{2}+\frac{A^{2}}{2} A=2c+2A2
易知上式在 c > 1 c>1 c>1时无实根。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值