曲线
y
=
(
x
−
1
)
(
x
−
2
)
2
(
x
−
3
)
3
(
x
−
4
)
4
y=(x-1)(x-2)^{2}(x-3)^{3}(x-4)^{4}
y=(x−1)(x−2)2(x−3)3(x−4)4的一个拐点是()
A.(1,0) B.(2,0) C.(3,0) D.(4,0)
解析:此题选C,设
g
(
x
)
=
(
x
−
1
)
(
x
−
2
)
2
(
x
−
4
)
4
g(x)=(x-1)(x-2)^{2}(x-4)^{4}
g(x)=(x−1)(x−2)2(x−4)4,则
y
=
(
x
−
3
)
3
g
(
x
)
y=(x-3)^{3} g(x)
y=(x−3)3g(x),于是
y
′
=
3
(
x
−
3
)
2
g
(
x
)
+
(
x
−
3
)
3
g
′
(
x
)
y
′
′
=
6
(
x
−
3
)
g
(
x
)
+
3
(
x
−
3
)
2
g
′
(
x
)
+
3
(
x
−
3
)
2
g
′
(
x
)
+
(
x
−
3
)
3
g
′
′
(
x
)
=
(
x
−
3
)
⋅
[
6
g
(
x
)
+
6
(
x
−
3
)
g
′
(
x
)
+
(
x
−
3
)
2
g
′
′
(
x
)
]
\begin{aligned} y^{\prime} &=3(x-3)^{2} g(x)+(x-3)^{3} g^{\prime}(x) \\ y^{\prime \prime} &=6(x-3) g(x)+3(x-3)^{2} g^{\prime}(x)+3(x-3)^{2} g^{\prime}(x)+(x-3)^{3} g^{\prime \prime}(x) \\ &=(x-3) \cdot\left[6 g(x)+6(x-3) g^{\prime}(x)+(x-3)^{2} g^{\prime \prime}(x)\right] \end{aligned}
y′y′′=3(x−3)2g(x)+(x−3)3g′(x)=6(x−3)g(x)+3(x−3)2g′(x)+3(x−3)2g′(x)+(x−3)3g′′(x)=(x−3)⋅[6g(x)+6(x−3)g′(x)+(x−3)2g′′(x)]
再令
h
(
x
)
=
6
g
(
x
)
+
6
(
x
−
3
)
g
′
(
x
)
+
(
x
−
3
)
2
g
′
′
(
x
)
h(x)=6 g(x)+6(x-3) g^{\prime}(x)+(x-3)^{2} g^{\prime \prime}(x)
h(x)=6g(x)+6(x−3)g′(x)+(x−3)2g′′(x),由
h
(
3
)
=
6
g
(
3
)
=
12
>
0
h(3)=6 g(3)=12>0
h(3)=6g(3)=12>0以及极限的保号性可知,存在
δ
>
0
\delta>0
δ>0,使得当
3
−
δ
<
x
<
3
+
δ
3-\delta<x<3+\delta
3−δ<x<3+δ时,有
h
(
x
)
>
0
h(x)>0
h(x)>0,这样即得(3,0)是拐点。
总结:对于曲线
f
(
x
)
=
(
x
−
a
1
)
k
1
(
x
−
a
2
)
k
2
⋯
(
x
−
a
n
)
k
n
,
k
i
∈
Z
+
,
a
1
<
a
2
<
⋯
<
a
n
f(x)=\left(x-a_{1}\right)^{k_{1}}\left(x-a_{2}\right)^{k_{2}} \cdots\left(x-a_{n}\right)^{k_{n}}, \quad k_{i} \in Z^{+}, \quad a_{1}<a_{2}<\cdots<a_{n}
f(x)=(x−a1)k1(x−a2)k2⋯(x−an)kn,ki∈Z+,a1<a2<⋯<an
下列结论成立
(i)当
k
i
k_i
ki为大于或等于3的奇数时,(a_i,0)为其拐点;
(i)当
k
i
k_i
ki为大于3的偶数时,(a_i,0)不为其拐点;
(i)当
k
i
=
1
k_i=1
ki=1时,(a_i,0)不为其拐点;
(i)当
k
i
=
2
k_i=2
ki=2时,(a_i,0)不为其拐点。
证明见论文《关于曲线
f
(
x
)
=
(
x
−
a
1
)
k
1
(
x
−
a
2
)
k
2
⋯
(
x
−
a
n
)
k
n
f(x)=\left(x-a_{1}\right)^{k_{1}}\left(x-a_{2}\right)^{k_{2}} \cdots\left(x-a_{n}\right)^{k_{n}}
f(x)=(x−a1)k1(x−a2)k2⋯(x−an)kn拐点的探讨》