考研数学:关于拐点问题的总结

曲线 y = ( x − 1 ) ( x − 2 ) 2 ( x − 3 ) 3 ( x − 4 ) 4 y=(x-1)(x-2)^{2}(x-3)^{3}(x-4)^{4} y=(x1)(x2)2(x3)3(x4)4的一个拐点是()
A.(1,0) B.(2,0) C.(3,0) D.(4,0)
解析:此题选C,设 g ( x ) = ( x − 1 ) ( x − 2 ) 2 ( x − 4 ) 4 g(x)=(x-1)(x-2)^{2}(x-4)^{4} g(x)=(x1)(x2)2(x4)4,则 y = ( x − 3 ) 3 g ( x ) y=(x-3)^{3} g(x) y=(x3)3g(x),于是
y ′ = 3 ( x − 3 ) 2 g ( x ) + ( x − 3 ) 3 g ′ ( x ) y ′ ′ = 6 ( x − 3 ) g ( x ) + 3 ( x − 3 ) 2 g ′ ( x ) + 3 ( x − 3 ) 2 g ′ ( x ) + ( x − 3 ) 3 g ′ ′ ( x ) = ( x − 3 ) ⋅ [ 6 g ( x ) + 6 ( x − 3 ) g ′ ( x ) + ( x − 3 ) 2 g ′ ′ ( x ) ] \begin{aligned} y^{\prime} &=3(x-3)^{2} g(x)+(x-3)^{3} g^{\prime}(x) \\ y^{\prime \prime} &=6(x-3) g(x)+3(x-3)^{2} g^{\prime}(x)+3(x-3)^{2} g^{\prime}(x)+(x-3)^{3} g^{\prime \prime}(x) \\ &=(x-3) \cdot\left[6 g(x)+6(x-3) g^{\prime}(x)+(x-3)^{2} g^{\prime \prime}(x)\right] \end{aligned} yy=3(x3)2g(x)+(x3)3g(x)=6(x3)g(x)+3(x3)2g(x)+3(x3)2g(x)+(x3)3g(x)=(x3)[6g(x)+6(x3)g(x)+(x3)2g(x)]
再令 h ( x ) = 6 g ( x ) + 6 ( x − 3 ) g ′ ( x ) + ( x − 3 ) 2 g ′ ′ ( x ) h(x)=6 g(x)+6(x-3) g^{\prime}(x)+(x-3)^{2} g^{\prime \prime}(x) h(x)=6g(x)+6(x3)g(x)+(x3)2g(x),由 h ( 3 ) = 6 g ( 3 ) = 12 > 0 h(3)=6 g(3)=12>0 h(3)=6g(3)=12>0以及极限的保号性可知,存在 δ > 0 \delta>0 δ>0,使得当 3 − δ < x < 3 + δ 3-\delta<x<3+\delta 3δ<x<3+δ时,有 h ( x ) > 0 h(x)>0 h(x)>0,这样即得(3,0)是拐点。

总结:对于曲线
f ( x ) = ( x − a 1 ) k 1 ( x − a 2 ) k 2 ⋯ ( x − a n ) k n , k i ∈ Z + , a 1 < a 2 < ⋯ < a n f(x)=\left(x-a_{1}\right)^{k_{1}}\left(x-a_{2}\right)^{k_{2}} \cdots\left(x-a_{n}\right)^{k_{n}}, \quad k_{i} \in Z^{+}, \quad a_{1}<a_{2}<\cdots<a_{n} f(x)=(xa1)k1(xa2)k2(xan)kn,kiZ+,a1<a2<<an
下列结论成立
(i)当 k i k_i ki为大于或等于3的奇数时,(a_i,0)为其拐点;
(i)当 k i k_i ki为大于3的偶数时,(a_i,0)不为其拐点;
(i)当 k i = 1 k_i=1 ki=1时,(a_i,0)不为其拐点;
(i)当 k i = 2 k_i=2 ki=2时,(a_i,0)不为其拐点。
证明见论文《关于曲线 f ( x ) = ( x − a 1 ) k 1 ( x − a 2 ) k 2 ⋯ ( x − a n ) k n f(x)=\left(x-a_{1}\right)^{k_{1}}\left(x-a_{2}\right)^{k_{2}} \cdots\left(x-a_{n}\right)^{k_{n}} f(x)=(xa1)k1(xa2)k2(xan)kn拐点的探讨》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值