线性代数之 矩阵的特征值,特征向量,特征分解

线性代数之 矩阵的特征值,特征向量和特征分解

前言

矩阵的特征分解是比较基础的知识了,但是应用却十分广泛,比如主成分分析、矩阵分解之类的。现在回顾一下矩阵特征值的相关知识。

特征值和特征向量

定义:对于n阶实方阵 A A A,如果存在非零向量 x x x使得 A x = λ x , λ ∈ R Ax=\lambda x,\lambda \in R Ax=λx,λR,则称 λ \lambda λ是矩阵 A A A的一个特征值, x x x A A A的属于 λ \lambda λ的特征向量。

以上数学定义比较简单但是不够直观。从几何上更容易理解:矩阵乘法实际上是对向量的线性变换(也就是对向量旋转和伸缩),特征向量就是经过线性变换后方向不变的向量,特征值就是伸缩量。

求矩阵特征值

A x = λ x ( λ E − A ) x = 0 矩 阵 方 程 有 非 零 解 , 说 明 ( λ E − A ) 是 奇 异 矩 阵 ∣ λ E − A ∣ = 0 Ax=\lambda x \\ (\lambda E- A) x = 0 \\ \quad \\ 矩阵方程有非零解,说明(\lambda E- A)是奇异矩阵\\ \quad \\ |\lambda E- A|=0 Ax=λx(λEA)x=0(λEA)λEA=0
∣ λ E − A ∣ |\lambda E- A| λEA是矩阵 A A A的特征多项式,求解得到 A A A的所有特征值,然后将特征值带回 A x = λ x Ax=\lambda x Ax=λx得到对应的特征向量。

不同特征值的特征向量是线性无关的,证明如下:
A x 1 = λ 1 x 1 A x 2 = λ 2 x 2 如 果 x 1 , x 2 线 性 相 关 , 则 存 在 非 全 零 k 1 , k 2 使 得 k 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值