前言
矩阵的特征分解是比较基础的知识了,但是应用却十分广泛,比如主成分分析、矩阵分解之类的。现在回顾一下矩阵特征值的相关知识。
特征值和特征向量
定义:对于n阶实方阵 A A A,如果存在非零向量 x x x使得 A x = λ x , λ ∈ R Ax=\lambda x,\lambda \in R Ax=λx,λ∈R,则称 λ \lambda λ是矩阵 A A A的一个特征值, x x x是 A A A的属于 λ \lambda λ的特征向量。
以上数学定义比较简单但是不够直观。从几何上更容易理解:矩阵乘法实际上是对向量的线性变换(也就是对向量旋转和伸缩),特征向量就是经过线性变换后方向不变的向量,特征值就是伸缩量。
求矩阵特征值
A x = λ x ( λ E − A ) x = 0 矩 阵 方 程 有 非 零 解 , 说 明 ( λ E − A ) 是 奇 异 矩 阵 ∣ λ E − A ∣ = 0 Ax=\lambda x \\ (\lambda E- A) x = 0 \\ \quad \\ 矩阵方程有非零解,说明(\lambda E- A)是奇异矩阵\\ \quad \\ |\lambda E- A|=0 Ax=λx(λE−A)x=0矩阵方程有非零解,说明(λE−A)是奇异矩阵∣λE−A∣=0
∣ λ E − A ∣ |\lambda E- A| ∣λE−A∣是矩阵 A A A的特征多项式,求解得到 A A A的所有特征值,然后将特征值带回 A x = λ x Ax=\lambda x Ax=λx得到对应的特征向量。
不同特征值的特征向量是线性无关的,证明如下:
A x 1 = λ 1 x 1 A x 2 = λ 2 x 2 如 果 x 1 , x 2 线 性 相 关 , 则 存 在 非 全 零 k 1 , k 2 使 得 k 1