磁场中的磁介质
磁介质
磁介质的分类
磁介质–能与磁场产生相互作用的物质
磁化–磁介质在磁场作用下所发生的变化
磁导率–描述不同磁介质磁化后对原外磁场的影响
B
⃗
=
B
⃗
0
+
B
⃗
′
\vec B=\vec B_0+\vec B'
B=B0+B′
据
B
⃗
′
\vec B'
B′的大小和方向可以将磁介质分为四大类
- 顺磁质 B > B 0 B>B_0 B>B0
- 抗磁质 B < B 0 B<B_0 B<B0
- 铁磁质 B > > B 0 B>>B_0 B>>B0
- 超导体
顺磁质和抗磁质的磁化
PS.抗磁性是一切磁介质共同拥有的特性
磁化强度
磁化强度: M ⃗ = ∑ P ⃗ m Δ V \vec M=\frac{\sum \vec P_m}{\Delta V} M=ΔV∑Pm
设
j
s
j_s
js为轴线单位长度上的磁化电流,则有
M
=
∣
M
⃗
∣
=
∣
P
⃗
m
∣
Δ
V
=
j
s
l
s
l
s
=
j
s
M=|\vec M|=\frac{|\vec P_m|}{\Delta V}=\frac{j_sls}{ls}=j_s
M=∣M∣=ΔV∣Pm∣=lsjsls=js
据此,磁化强度在量值上等于磁介质表面磁化电流面密度
据此:
∮
L
M
⃗
⋅
d
l
⃗
=
M
∣
a
b
∣
=
j
s
∣
a
b
∣
=
∑
I
s
\oint_L\vec M\cdot d\vec l=M|ab|=j_s|ab|=\sum I_s
∮LM⋅dl=M∣ab∣=js∣ab∣=∑Is
即:**磁化强度对闭合回路L的线积分,等于穿过以L为周界的任意曲面的磁化电流的代数和。
**
磁介质中的磁场
磁场中的高斯定理
由于磁感应线都是闭合曲线,所以:
∮
s
B
⃗
⋅
d
S
⃗
=
∮
s
(
B
⃗
0
+
B
⃗
′
)
⋅
d
S
⃗
=
0
\oint_s \vec B\cdot d\vec S=\oint_s(\vec B_0+\vec B')\cdot d\vec S=0
∮sB⋅dS=∮s(B0+B′)⋅dS=0
磁介质中的安培环路定理
磁介质中的安培定理:
在稳恒磁场中,磁场强度矢量沿任一闭合路径的线积分(即磁场强度的环流)等于环路所包围的传导电流的代数和,而与磁化电流无关。
以无限长直通电螺线管为例,设管内介质相对磁导率为
μ
r
\mu_r
μr且为顺磁质,传导电流为
I
0
I_0
I0,单位长度有n匝,则有
∮
L
B
⃗
⋅
d
l
⃗
=
μ
0
n
(
I
0
+
I
s
)
\oint_L\vec B\cdot d\vec l=\mu_0n(I_0+I_s)
∮LB⋅dl=μ0n(I0+Is)
有:
μ
0
(
I
0
+
I
s
)
=
μ
I
0
\mu_0(I_0+I_s)=\mu I_0
μ0(I0+Is)=μI0
∮
L
B
⃗
⋅
d
l
⃗
=
μ
n
I
0
\oint_L\vec B\cdot d \vec l=\mu nI_0
∮LB⋅dl=μnI0
令
H
⃗
=
B
⃗
μ
0
μ
r
\vec H=\frac{\vec B}{\mu_0\mu_r}
H=μ0μrB则:
∮
L
H
⃗
⋅
d
l
⃗
=
∑
I
\oint_L\vec H\cdot d\vec l=\sum I
∮LH⋅dl=∑I
磁介质中的安培环流定理 | 电介质中的高斯定理 |
---|---|
B ⃗ = μ 0 μ r H ⃗ \vec B=\mu_0\mu_r\vec H B=μ0μrH | E ⃗ = D ⃗ ε 0 ε r \vec E=\frac{\vec D}{\varepsilon_0\varepsilon_r} E=ε0εrD |
∮ L H ⃗ ⋅ d l ⃗ = ∑ I \oint_L\vec H\cdot d \vec l=\sum I ∮LH⋅dl=∑I | ∮ s D ⃗ ⋅ d S ⃗ = ∫ V ρ e d V \oint_s\vec D\cdot d\vec S=\int _V\rho_edV ∮sD⋅dS=∫VρedV |
铁磁质
磁化曲线
据磁化曲线可以得到,铁磁质的
μ
r
\mu_r
μr不一定是一个常数,他可能是
H
⃗
\vec H
H的函数
磁滞回线
铁磁质总结
- 磁导率 μ \mu μ不是一个常量,其值不仅仅决定于原线圈中的电流,还决定于铁磁质样品磁化的历史,B与H不是线性关系
- 有很大的磁导率。放入线圈中可以使磁场增强 1 0 2 1 0 4 10^2 ~ 10^4 102 104
- 有剩磁、磁饱以及磁滞的现象
- 温度超过居里点,铁磁质变为顺磁质
铁磁质的分类与应用
- 软磁材料:变压器、继电器、电机、各种高频电磁元件的磁芯、磁棒
- 硬磁材料:永磁铁
- 矩磁材料:储存元件