RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索和生成模型的技术,广泛应用于 AI 助手、法律分析、医学 NLP 等领域。
以下是具体的实战案例和技术实现。
1. AI 助手中的 RAG 应用
案例 1:企业知识库助手
背景
- 企业员工需要快速获取公司内部政策、技术文档或产品说明,但传统搜索效率低下。
RAG 解决方案
- 知识库向量化:将公司内部的文档转换为向量嵌入,存入 FAISS 或 Pinecone 这样的向量数据库。
- 查询匹配:当员工提问时,RAG 通过相似度搜索找到相关文档。
- 增强生成:将检索到的内容作为上下文,输入到 LLM(如 GPT-4、Claude)生成精准回复。