RAG 在 AI 助手、法律分析、医学 NLP 领域的实战案例

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索和生成模型的技术,广泛应用于 AI 助手、法律分析、医学 NLP 等领域。

以下是具体的实战案例和技术实现。


1. AI 助手中的 RAG 应用

案例 1:企业知识库助手

背景
  • 企业员工需要快速获取公司内部政策、技术文档或产品说明,但传统搜索效率低下。
RAG 解决方案
  1. 知识库向量化:将公司内部的文档转换为向量嵌入,存入 FAISS 或 Pinecone 这样的向量数据库。
  2. 查询匹配:当员工提问时,RAG 通过相似度搜索找到相关文档。
  3. 增强生成:将检索到的内容作为上下文,输入到 LLM(如 GPT-4、Claude)生成精准回复。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

越哥聊AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值