靶向RNA-seq全面解决方案和加速分析,只看这篇就够了!

本文详细介绍了靶向RNA-seq的全面解决方案,包括Sentieon-STAR在RNA变异检测、基因表达定量、可变剪切和融合基因检测中的性能。Sentieon-STAR相比于STAR能显著提高分析速度,同时保持高一致性。通过实验证明,Sentieon-STAR在不同分析任务中表现出色,为RNA-seq分析提供了更快捷的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

RNA-seq,即通过高通量测序技术进行的转录组测序分析技术。最初作为研究mRNA,small RNA,non-coding RNA 等表达水平、表达差异基因的应用,在过去的十几年内迅速发展。而今, RNA-seq 在转录本变异、基因融合、可变剪切检测等场景均有大规模的应用。靶向 RNA-seq 则是对特定的转录本进行重点分析,与标准RNA-seq 类似,靶向富集方法可用于评估基因表达、 RNA 种类分析,以及基因融合和突变检测,但相比标准RNA-seq,具有高灵敏度、宽动态范围、低成本与高通量等优势。
STAR 作为一款经典的比对软件,在科研与临床 RNA 测序数据分析中有着广泛的应用。相较于同样经典的 Tophat2 与 HISAT2,STAR 拥有更高的 unique mapping 比例,且对 more soft-clipped 和错配碱基比对有较高的容忍度,适用于更加复杂的分析需求。因此 STAR 成为 ENCODE 计划的御用比对软件。为了克服 STAR 运行耗时较长的弊端,Sentieon开发了对应的加速模块 Sentieon-STAR,以期缩短软件的运行时间。纳昂达利用开发的多款靶向捕获 panel 的靶向 RNA-seq 数据,对 Sentieon-STAR 相比开源 STAR 在 RNA 变异检测、基因表达定量、可变剪切检测和融合基因检测多个方面的表现进行了评估。

转录本变异检测是指通过比较样本 RNA 序列和参考基因组对应序列,来寻找单碱基多态性和小片段的插入缺失,其结果大多用于致病位点的判断或性状相关的研究。
融合基因是指两个或多个基因首尾相连,置于同一套调控序列控制之下构成的嵌合基因,其表达产物为融合蛋白。融合基因的检测在某些癌症中成为了重要的检测指标。
可变剪接,或称选择性剪接,即主要基因或者 mRNA 前体转录所产生的 RNA 的外显子以多种方式通过 RNA 剪接进行重连,由此产生的不同的mRNA可能被翻译成不同的蛋白质异构体,多数情况下这些异构体的结构与功能均有差异。可变剪接可用于研究同基因的不同转录本表达差异对性状的影响。

分析流程

表 1 | 测试内容及方法

内容概要:本文档主要介绍了Intel Edge Peak (EP) 解决方案,涵盖从零到边缘高峰的软件配置服务管理。EP解决方案旨在简化客户的入门门槛,提供一系列工具服务,包括Edge Software Provisioner (ESP),用于构建缓存操作系统镜像软件栈;Device Management System (DMS),用于远程集群或本地集群管理;以及Autonomous Clustering for the Edge (ACE),用于自动化边缘集群的创建管理。文档详细描述了从软件发布、设备制造、运输、安装到最终设备激活的全过程,并强调了在不同应用场景(如公共设施、工业厂房、海上油井移动医院)下的具体部署步骤技术细节。此外,文档还探讨了安全设备注册(FDO)、集群管理、密钥轮换备份等关键操作。 适合人群:具备一定IT基础设施边缘计算基础知识的技术人员,特别是负责边缘设备部署管理的系统集成商运维人员。 使用场景及目标:①帮助系统集成商客户简化边缘设备的初始配置后续管理;②确保设备在不同网络环境下的安全启动注册;③支持大规模边缘设备的自动化集群管理应用程序编排;④提供详细的密钥管理集群维护指南,确保系统的长期稳定运行。 其他说明:本文档是详细描述了Edge Peak技术及其应用案例。文档不仅提供了技术实现的指导,还涵盖了策略配置、安全性扩展性的考虑,帮助用户全面理解实施Intel的边缘计算解决方案
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值