从推出linux版本的Rstudio以来已经一年,当初推这个账号,本身是为了做代码复现,为了统一解决环境问题,所以我们配备配置R环境的相关服务,这里小编简单整理一下在使用中常遇到的问题
1、加载很慢,动不动刷不出来
有很多用户反馈,Rstudio经常加载不出来,后台一看,内存,线程都是闲置的,但是就是刷不出来,这是怎么回事呢?
其实很多人运行的过程中,选择右上角推出按钮时候
选择了保存.RData的文件,
~/test/recurrent/recurrent2/02.diff.exp/.RData是这个文件所在未知,在下一次打开的时候,系统会读取该位置的.RData的信息,重新加载,这个文件包含了所有的镜像信息,有的很大!!!!
这就是慢的原因,当然还有一些缓存等等相关的信息,一般来说,缓存造成的影响不多,除非你的数据特别大
2、文件混乱,层次不明
小编在安装R包的过程中,经常遇到一个问题,一打开Rstudio的file部分,全是文件,这不是什么大问题,个人习惯的问题。但是在有一次一对一辅导的学员中,发现了一个学员这个文件夹的内容生成的文件,竟然是上一个项目的内容.....
可能小编有点强迫症,不管是项目,还是文章复现,我们通过文件夹的顺序对其进行整理,比如说之前做的一篇复现,一篇文章的内容一定在一个文件夹的同级目录下,分成1,2,3,4,5这样的顺序,也是告诉自己第一步做的啥,第二步做的啥,第三步做的啥
每一个文件夹里面是什么呢?脚本+输入文件+结果文件(小编喜欢将结果文件保存在results中)
一目了然,这样的层级,在后期面对审稿的意见要求加分析,还是上传代码,甚至是传给学生,师弟师妹们进行学习,都会显得很简单。
在linux的Rstudio使用中,其实文件的生成和使用也是这样的,清晰的文件夹层级,会让人在烦躁的代码中得到一丝丝的清爽。这里只是提个小小的意见而已哈
3、环境的稳定
最近装包的过程中发现一个问题,很多人在进行单细胞分析中使用了很多R包,尤其是Seurat这个包,每一个包都有特定版本,比如说Seurat就有V4和V5的版本,这两个版本差距很大,其中比较重要的一个依赖包Matrix,也是不一样的。不要盲目的更新R包,编译型的语言(R/Python)不是向下完全兼容的,在JAVA语言中,确实存在向下兼容,比如说高版本的兼容低版本的,但是R/python都不行,打个比方,可能在某一个包在2.6版本存在某一个函数,到了3.0版本,突然这个函数消失了,然后导致了各种报错信息,尤其是基础差的用户,根本就无法解决。
这时候,在我们自己运行中,可能会去改包,改函数,但是这样的工程很大,但是对于大部分人来说,其实都是做不到,所以不要轻易更新R包,大家可以自己安装,如果碰到版本冲突,可以联系购买时添加的服务器管理员,我们会在后台进行适当的更新,在大环境稳定的情况下,给大家进行安装,如果是底层的问题,就要适当舍弃一些功能。
我们的版本不会是最新的,但是一定是最稳定的,不要盲目更新,网上教程很多,可以尝试,如果装坏了,就找管理员重置一下当初的环境就可以了
重点
生信豆芽菜在线版Rstudio服务器,已经开通在线充值服务,详细见链接:
不会用怎么办?
如何安装R包
极大的便利了对rstudio云服务器的需求,有需求的小伙伴可以去试试,Rstudio共享服务器,如果有问题可以联系服务器管理员(页面客服字样)