B细胞异质性和三级淋巴结构的单细胞转录组测序预测乳腺癌预后和新辅助治疗效果(10分+)

本次小编解读是一篇10分左右的文章:B细胞异质性和三级淋巴结构的单细胞转录组测序预测乳腺癌预后和新辅助治疗效果

图片

原文链接:
Single‐cell transcriptome sequencing of B‐cell heterogeneity and tertiary lymphoid structure predicts breast cancer prognosis and neoadjuvant therapy efficacy

一、研究背景

1、乳腺癌(BC)是一种高度异质性的疾病,亚型很多,临床行为和治疗效果差异很大

2、单细胞测序作为一个研究负责微环境机器有力的工具,对于研究BC具有一定的价值

3、三级淋巴结构 (TLS) 是在持续性炎症(包括恶性肿瘤)部位的非淋巴组织中形成的异位淋巴器官,很多证据表明:TLS 的存在与复发风险降低和免疫检查点阻断 (ICB) 有效性增加密切相关

4、TLS 的存在与早期肿瘤 TNM 分期之间存在正相关,以及高 TLS 的 BC 患者的预后更好

5、在这项研究中,我们应用scRNA-seq来分析人BC,以了解肿瘤浸润免疫细胞(特别是TIL-B和TAN)的各种功能和相互作用,并阐述TLS与化疗和免疫治疗的临床相关性,并寻找直接的TLS生物标志物,以更全面地了解TLS的功能和预后相关性。

二、数据来源

单细胞+自测数据+GSE35640; GSE25055;IMvigor210

三、方法和结果展示

1、BC的单细胞表达谱和细胞类型

单细胞常规的亚群注释,细胞数的统计,并以TSNE、umap的图展示分析亚群的分布和基因的表达

图片

2.、BC中的TIL-B异质性

B细胞二次聚类,注释分析,并通过TCGA数据集验证CD69基因预后(OS),通过重链基因IGHG和IGHA以及轻链基因IGLC和IGKC分别在浆细胞和类别转化的B细胞中表现出相互排斥的差异表达。

图片

3、对 TIL-B 的详细分析揭示了其在 BC 病变中的成熟轨迹

monocle2分析B细胞的分化轨迹

图片

4、TIL-B与成熟TLS的相关性研究

TCGA BRCA队列的H&E染色组织切片来确定TLS的存在

图片

CD23 最近被确定为滤泡树突状细胞 (FDC) 的标志物,其在 FDC 上的表达不依赖于肿瘤中 CD23 的过表达;差异基因分析支持我们的发现,即FCER2(CD23)表达在TLSs的BC中显着更高,通过根据 TIMER2,不同的肿瘤类型表现出 FCER2 表达情况;利用 TIMER2 中的 EPIC 和 TIDE 算法,计算了 FCER2 表达与肿瘤浸润 BC 免疫细胞之间的关系,TCGA数据集中CD23表达与CD23+B细胞(TIMER)与预后的关系。

图片

图片

5、TLS状态对TME内细胞相互作用的影响

TLS-high和TLS-low在TME微环境中与其他细胞之间的互作关系(cellchat)

图片

图片

图片

6、scRNA-seq揭示了TAN在TLS不同状态下的可塑性

使用反卷积算法CIBERSORTx预测大规模scRNA-seq数据集中每种细胞类型的丰度。检查了 BC 队列中两种细胞类型及其亚群的浸润模式中的配对 Spearman 相关性,34将它们分为两组:TLS-低和TLS-高.与TLS-high相比,TLS-low组的TAN和TIL-B具有显著的正相关

图片

图片

7、BC中不同状态的TLS表现出代谢异质性和生存差异

作者描述了免疫细胞在TLS不同状态下的分布并检查两组之间每个免疫亚群的组成。我们发现,TLS阳性组中与预后良好的滤泡B细胞和CD8+T细胞富集。对两组免疫细胞进行DEGs分析。结果显示,TLS阳性组的decorin含量相对较高,可抑制血管生成和肿瘤增殖, APOD,抑制肿瘤生长,42但它在促进肿瘤转移的COL1A1中也相对较高,再次凸显了TME的复杂性。

图片

图片

图片

8、BC 中 TLS 和 TLS 特异性标志物的预后价值

图片

总结

这篇文章做的比较多,有点杂,小编针对这篇文章单独对分析顺序重新理一下思路:

1、下载单细胞数据,常规聚类降维分析,亚群注释

2、针对B细胞进行二次聚类分析,包括富集分析,重轻的基因表达说明B细胞的异质性

3、轨迹分析(monocle2)揭示B细胞的分化进程说明乳腺癌的病变进程

4、额外引入TLS分组(这里不一定有这个分组,所以可以换成其他的分组,比如耐药与否,治疗与否等等),TLS高表达CD23,通过实验验证TLS高表达了CD23,当然也可以自己做这个分组,以CD23高低表达区分TLS-High和TLS-low,制作分组信息后,进行互作分析

5、以TLS-High和TLS-low做为分组,通过cellchat进行互作网络分析

6、回到TCGA数据(bulk RNA seq)中,验证TLS-high和TLS-low组的TAN和TIL-B的关系

7、回到单细胞层面,基于scMetabolism包分析TLS-High和TLS-low代谢通路的评分

8、通过KM曲线对 APOD 进行了生存分析,APOD 是一种在 TLS 阳性和 TLS 阴性患者中表达不同的基因,以检查 TLS 不同状态之间 OS 的差异

9、基于三套免疫治疗的数据分析CD23+TLS_低和CD23+TLS_高对于免疫治疗的响应情况

10、评估TLS特异性标志物(CD20、CD23、CD8、CD4和BCL6)在TCGA BRCA患者中的预后意义

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值