Attentive Transfer Entropy to Exploit Transient Emergence of Coupling Effect

本文研究目标在于通过信息论和神经网络方法重建耦合网络,利用时间序列数据识别非线性动力系统中变量间的耦合关系。方法包括使用传递熵度量信息流,并借助注意力机制优化。研究假设网络具有非线性和循环性,适用于神经科学领域。同时,方法既包含监督学习(用于分类耦合效应)也包含无监督学习(训练注意力机制)。
摘要由CSDN通过智能技术生成

本文可以采用以下六个标准:

  1. 目标:指的是研究的基本目的。

    • 耦合网络重建专注于揭示网络中变量之间潜在的连接结构,确定它们是如何相互关联的。
    • 因果发现更进一步,不仅识别连接,还确定变量之间的因果关系和方向。
    • 信息传递测量量化变量之间流动的信息量,表明它们影响的强度和方向。
  2. 方法:指的是实现研究目标所使用的技术和方法。

    • 信息论方法利用传递熵和互信息等概念来衡量变量之间的统计依赖性和信息流。
    • 格兰杰因果关系检验一个变量的过去值是否能改进对另一个变量未来值的预测,暗示因果关系。
    • 状态空间重构方法涉及在状态空间中创建系统动力学的表示,并分析轨迹之间的几何关系,以推断因果关系。
    • 神经网络可用于各种任务,例如学习数据中的复杂模式、估计互信息或直接预测因果关系。
  3. 对网络的假设:这些是对所研究的网络结构和性质的潜在假设。

    • 线性假设变量之间的关系是线性的,即
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值