ANTN: Bridging Autoregressive Neural Networks and Tensor Networks for Quantum Many-Body Simulation

本文提出ANTN架构,结合自回归神经网络和张量网络,用于量子多体模拟。核心应用包括量子态学习和二维J1-J2海森堡模型的基态计算,主要涉及量子比特系统的一维和二维场景。
摘要由CSDN通过智能技术生成

我们采用以下六个分类标准:
 

  1. 研究领域:

    • 量子多体物理学: 这是本文的中心焦点,因为它引入了ANTN来模拟具有许多相互作用粒子的量子系统。(Girvin & Yang, 2019)等参考文献对这一领域进行了广泛的概述。
    • 量子计算: 虽然不是主要焦点,但本文提到了量子多体模拟与量子计算的相关性(Preskill, 2021)。
    • 机器学习/人工智能: 本文大量利用机器学习技术,特别是神经网络,来加强量子模拟。(Carleo & Troyer, 2017)等参考文献探讨了机器学习和量子物理的交叉点。
    • 量子化学: 本文没有专门深入研究量子化学,但正如(Barrett et al., 2022)所建议,这些方法有可能应用于这一领域。
  2. 方法论:

    • 张量网络(TN): 本文以张量网络,特别是矩阵乘积态(MPS),作为ANTN架构的基础。 (Vidal, 2003, 2004)等参考文献是关于MPS的开创性著作。
    • 神经网络࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值