通俗易懂的介绍LLM大模型技术常用专业名词(通用版)

1. 神经网络 (Neural Network)

  • 解释: 一种模拟人脑神经元结构的计算模型,用于处理复杂的数据模式。

  • 示例: 图像识别中的卷积神经网络(CNN)。

2. 深度学习 (Deep Learning)

  • 解释: 基于多层神经网络的机器学习方法,能够自动提取数据的特征。

  • 示例: 使用深度学习进行语音识别。

3. 模型预训练 (Model Pre-training)

  • 解释: 在大规模数据集上预先训练模型,以便在特定任务上进行微调。

  • 示例: BERT模型在大量文本数据上进行预训练。

4. 模型微调 (Model Fine-tuning)

  • 解释: 在预训练模型的基础上,针对特定任务进行进一步训练。

  • 示例: 在预训练的BERT模型上微调以进行情感分析。

5. 模型参数 (Model Parameters)

  • 解释: 模型中可调整的变量,用于优化模型的性能。

  • 示例: 神经网络中的权重和偏置。

6. 生成式 (Generative)

  • 解释: 能够生成新数据的模型,如文本、图像等。

  • 示例: GPT-3生成自然语言文本。

7. 预测式 (Predictive)

  • 解释: 用于预测未来事件或结果的模型。

  • 示例: 股票价格预测模型。

8. 多模态 (Multimodal)

  • 解释: 能够处理多种类型数据(如文本、图像、音频)的模型。

  • 示例: 同时处理图像和文本的模型。

9. LLM 大模型 (Large Language Model, LLM)

  • 解释: 大规模的语言模型,能够理解和生成自然语言。

  • 示例: GPT-4。

10. Token

  • 解释: 在自然语言处理中,文本被分割成的最小单位。

  • 示例: 句子“Hello, world!”被分割成["Hello", ",", "world", "!"]。

11. 提示词 (Prompt)

  • 解释: 用户输入给模型的指令或问题,用于引导模型生成响应。

  • 示例: “写一篇关于气候变化的文章。”

12. 上下文 (Context)

  • 解释: 模型在处理当前输入时所考虑的先前信息。

  • 示例: 在多轮对话中,模型会根据之前的对话内容生成响应。

13. 多轮对话 (Multi-turn Dialogue)

  • 解释: 涉及多次交互的对话系统,能够记住之前的对话内容。

  • 示例: 客服机器人进行多轮问答。

14. 记忆存储 (Memory Storage)

  • 解释: 模型在对话或任务中存储和检索信息的能力。

  • 示例: 聊天机器人记住用户的偏好。

15. 模型无状态 (Stateless Model)

  • 解释: 模型在处理每个输入时不会保留之前的状态。

  • 示例: 简单的文本分类模型。

16. 上下文截断 (Context Truncation)

  • 解释: 当输入超出模型处理能力时,截断部分上下文以适应当前处理窗口。

  • 示例: 长文本输入被截断以适应模型的输入长度限制。

17. 逻辑推理 (Logical Reasoning)

  • 解释: 模型进行逻辑分析和推理的能力。

  • 示例: 解决数学问题的模型。

18. 幻觉 (Hallucination)

  • 解释: 模型生成与输入无关或不符合事实的内容。

  • 示例: 模型生成虚假的历史事件。

19. 相似度-概率 (Similarity-Probability)

  • 解释: 用于衡量两个数据点之间相似度的概率分布。

  • 示例: 文本相似度计算。

20. 向量量化 (Vector Quantization)

  • 解释: 将高维向量映射到低维离散空间的技术。

  • 示例: 图像压缩中的向量量化。

21. 向量数据库 (Vector Database)

  • 解释: 存储和检索高维向量的数据库,用于相似性搜索。

  • 示例: 用于图像检索的向量数据库。

22. RGA增强检索 (Reinforced Generative Retrieval)

  • 解释: 结合生成模型和检索模型的增强检索技术。

  • 示例: 在问答系统中使用RGA增强检索。

23. 本地知识库 (Local Knowledge Base)

  • 解释: 存储在本地设备上的结构化知识库,用于特定领域的查询。

  • 示例: 公司内部的FAQ系统。

24. Agent智能体 (Agent)

  • 解释: 能够自主执行任务的软件实体,通常具备决策能力。

  • 示例: 自动驾驶汽车中的智能体。

25. Function Call

  • 解释: 在编程中调用特定函数以执行特定任务。

  • 示例: 调用一个函数来计算两个数的和。

26. RPA (Robotic Process Automation)

  • 解释: 使用软件机器人自动化重复性任务的技术。

  • 示例: 自动化数据录入任务。

27. MPC协议 (Multi-Party Computation Protocol)

  • 解释: 多方在不泄露各自输入的情况下共同计算一个函数的协议。

  • 示例: 安全多方计算用于隐私保护的数据分析。

28. 工作流编排 (Workflow Orchestration)

  • 解释: 管理和自动化多个任务或服务的工作流程。

  • 示例: 使用Apache Airflow编排数据处理任务。

通过这种排列顺序,读者可以更清晰地理解从基础概念到高级应用的逻辑链条。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值