1. 神经网络 (Neural Network)
-
解释: 一种模拟人脑神经元结构的计算模型,用于处理复杂的数据模式。
-
示例: 图像识别中的卷积神经网络(CNN)。
2. 深度学习 (Deep Learning)
-
解释: 基于多层神经网络的机器学习方法,能够自动提取数据的特征。
-
示例: 使用深度学习进行语音识别。
3. 模型预训练 (Model Pre-training)
-
解释: 在大规模数据集上预先训练模型,以便在特定任务上进行微调。
-
示例: BERT模型在大量文本数据上进行预训练。
4. 模型微调 (Model Fine-tuning)
-
解释: 在预训练模型的基础上,针对特定任务进行进一步训练。
-
示例: 在预训练的BERT模型上微调以进行情感分析。
5. 模型参数 (Model Parameters)
-
解释: 模型中可调整的变量,用于优化模型的性能。
-
示例: 神经网络中的权重和偏置。
6. 生成式 (Generative)
-
解释: 能够生成新数据的模型,如文本、图像等。
-
示例: GPT-3生成自然语言文本。
7. 预测式 (Predictive)
-
解释: 用于预测未来事件或结果的模型。
-
示例: 股票价格预测模型。
8. 多模态 (Multimodal)
-
解释: 能够处理多种类型数据(如文本、图像、音频)的模型。
-
示例: 同时处理图像和文本的模型。
9. LLM 大模型 (Large Language Model, LLM)
-
解释: 大规模的语言模型,能够理解和生成自然语言。
-
示例: GPT-4。
10. Token
-
解释: 在自然语言处理中,文本被分割成的最小单位。
-
示例: 句子“Hello, world!”被分割成["Hello", ",", "world", "!"]。
11. 提示词 (Prompt)
-
解释: 用户输入给模型的指令或问题,用于引导模型生成响应。
-
示例: “写一篇关于气候变化的文章。”
12. 上下文 (Context)
-
解释: 模型在处理当前输入时所考虑的先前信息。
-
示例: 在多轮对话中,模型会根据之前的对话内容生成响应。
13. 多轮对话 (Multi-turn Dialogue)
-
解释: 涉及多次交互的对话系统,能够记住之前的对话内容。
-
示例: 客服机器人进行多轮问答。
14. 记忆存储 (Memory Storage)
-
解释: 模型在对话或任务中存储和检索信息的能力。
-
示例: 聊天机器人记住用户的偏好。
15. 模型无状态 (Stateless Model)
-
解释: 模型在处理每个输入时不会保留之前的状态。
-
示例: 简单的文本分类模型。
16. 上下文截断 (Context Truncation)
-
解释: 当输入超出模型处理能力时,截断部分上下文以适应当前处理窗口。
-
示例: 长文本输入被截断以适应模型的输入长度限制。
17. 逻辑推理 (Logical Reasoning)
-
解释: 模型进行逻辑分析和推理的能力。
-
示例: 解决数学问题的模型。
18. 幻觉 (Hallucination)
-
解释: 模型生成与输入无关或不符合事实的内容。
-
示例: 模型生成虚假的历史事件。
19. 相似度-概率 (Similarity-Probability)
-
解释: 用于衡量两个数据点之间相似度的概率分布。
-
示例: 文本相似度计算。
20. 向量量化 (Vector Quantization)
-
解释: 将高维向量映射到低维离散空间的技术。
-
示例: 图像压缩中的向量量化。
21. 向量数据库 (Vector Database)
-
解释: 存储和检索高维向量的数据库,用于相似性搜索。
-
示例: 用于图像检索的向量数据库。
22. RGA增强检索 (Reinforced Generative Retrieval)
-
解释: 结合生成模型和检索模型的增强检索技术。
-
示例: 在问答系统中使用RGA增强检索。
23. 本地知识库 (Local Knowledge Base)
-
解释: 存储在本地设备上的结构化知识库,用于特定领域的查询。
-
示例: 公司内部的FAQ系统。
24. Agent智能体 (Agent)
-
解释: 能够自主执行任务的软件实体,通常具备决策能力。
-
示例: 自动驾驶汽车中的智能体。
25. Function Call
-
解释: 在编程中调用特定函数以执行特定任务。
-
示例: 调用一个函数来计算两个数的和。
26. RPA (Robotic Process Automation)
-
解释: 使用软件机器人自动化重复性任务的技术。
-
示例: 自动化数据录入任务。
27. MPC协议 (Multi-Party Computation Protocol)
-
解释: 多方在不泄露各自输入的情况下共同计算一个函数的协议。
-
示例: 安全多方计算用于隐私保护的数据分析。
28. 工作流编排 (Workflow Orchestration)
-
解释: 管理和自动化多个任务或服务的工作流程。
-
示例: 使用Apache Airflow编排数据处理任务。
通过这种排列顺序,读者可以更清晰地理解从基础概念到高级应用的逻辑链条。