论文浅尝 | 基于知识增强的多行为对比推荐

6dc38b5e4d6c59595b30d3173f03ce1f.png

笔记整理:吴飞跃,东南大学硕士,研究方向为推荐系统

链接:https://doi.org/10.1145/3539597.3570386

动机

在实际推荐场景中,用户和物品之间存在多种类型的交互行为,如在线购物平台上的点击、标记为喜欢和购买等。传统的推荐技术通常只关注用户和物品之间单一类型的行为建模,因此如何充分利用多种行为信息进行推荐对于现有系统具有重要意义,这在两个方面提出了需要探索的挑战:(1)利用用户的个性化偏好捕捉多行为依赖关系;(2)处理目标行为稀疏监督信号导致的推荐不足。本文旨在探索利用用户个性化偏好来捕捉多行为依赖关系以及处理目标行为稀疏监督信号引起的不足推荐两个方面所面临的挑战。

贡献

本文的主要贡献包括以下几个方面:

1、提出了一个新的推荐框架KMCLR(Knowledge Enhancement Multi-Behavior Contrastive Learning Recommendation),该框架包括两个对比学习任务和三个功能模块,通过将多行为信息和知识图谱信息相结合,增强用户层和物品层的表示,强调从不同角度对用户-物品信息进行建模,缓解目标行为数据稀疏的问题。

2、在KMCLR框架中,提出了两个对比学习任务和一个损失范式,

知识图谱transformer是一种基于图谱结构的编码器模型,用于学习和表示知识图谱中的关系。它采用了类似于普通transformer模型的框架,但在结构上有一些差异。通过引用可以看到,知识图谱transformer的框架图与普通transformer模型相似。然而,为了更好地利用图谱中的关系结构,解决了线性/层次约束的问题,作者提出了一种新的Graph Transformer编码器,如引用所述。这种编码器允许模型有效地利用图谱的结构信息,从而更好地学习和表示知识图谱中的关系。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [论文浅尝 | 利用图 Transformer 实现基于知识图谱的文本生成](https://blog.csdn.net/TgqDT3gGaMdkHasLZv/article/details/100190240)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [基于生成式预训练Transformer的跨媒体内容生成及知识图谱构建](https://blog.csdn.net/universsky2015/article/details/131468154)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值