笔记整理:吴飞跃,东南大学硕士,研究方向为推荐系统
链接:https://doi.org/10.1145/3539597.3570386
动机
在实际推荐场景中,用户和物品之间存在多种类型的交互行为,如在线购物平台上的点击、标记为喜欢和购买等。传统的推荐技术通常只关注用户和物品之间单一类型的行为建模,因此如何充分利用多种行为信息进行推荐对于现有系统具有重要意义,这在两个方面提出了需要探索的挑战:(1)利用用户的个性化偏好捕捉多行为依赖关系;(2)处理目标行为稀疏监督信号导致的推荐不足。本文旨在探索利用用户个性化偏好来捕捉多行为依赖关系以及处理目标行为稀疏监督信号引起的不足推荐两个方面所面临的挑战。
贡献
本文的主要贡献包括以下几个方面:
1、提出了一个新的推荐框架KMCLR(Knowledge Enhancement Multi-Behavior Contrastive Learning Recommendation),该框架包括两个对比学习任务和三个功能模块,通过将多行为信息和知识图谱信息相结合,增强用户层和物品层的表示,强调从不同角度对用户-物品信息进行建模,缓解目标行为数据稀疏的问题。
2、在KMCLR框架中,提出了两个对比学习任务和一个损失范式,