CVPR 2019 开源论文 | 基于空间自适应归一化的图像语义合成

640


作者丨武广

学校丨合肥工业大学硕士生

研究方向丨图像生成


深度学习在算力的推动下不断的发展,随着卷积层的堆叠,模型的层数是越来越深,理论上神经网络中的参数越多这样对数据的拟合和分布描述就能越细致。然而简单的堆叠卷积层又会引起梯度消失和过拟合的问题,伴随着解决方案下残差网络、归一化和非线性层被提出。


本文将对 NVIDIA 近期的论文 Semantic Image Synthesis with Spatially-Adaptive Normalization 进行解读,这篇论文提出了适合保留语义信息的 Spatially-Adaptive Normalization(空间自适应归一化),同时文章在实现细节上也很有参考意义。


640?wx_fmt=png


640?wx_fmt=png


论文引入


Batch Normalization (BN) 在 Inception v2 [1] 网络中被提出,它的设计之初是为了解决 Internal Covariate Shift 问题,也就是在训练过程中,隐层的输入分布老是变来变去。因为深层神经网络在做非线性变换前的激活输入值随着网络深度加深或者在训练过程中,其分布逐渐发生偏移或者变动,这导致了训练收敛慢,也就是数据整体分布逐渐往非线性函数的取值区间的上下限两端靠近。所以这导致反向传播时低层神经网络的梯度消失,这是训练深层神经网络收敛越来越慢的本质原因。


我们知道数据白化,是对输入数据分布变换到 0 均值,单位方差的正态分布,这样会使神经网络较快收敛。如果这种"白化处理”作用在每一个隐层上,是不是可以稳定数据分布的同时加速收敛?


这个问题的答案就是 BN 设计的根源了,BN 就是通过一定的规范化手段,对于每个隐层神经元,把逐渐向非线性函数映射后向取值区间极限饱和区靠拢的输入分布强制拉回到均值为 0 方差为 1 的比较标准的正态分布,使得非线性变换函数的输入值落入对输入比较敏感的区域,以此避免梯度消失问题。


掌握了 Batch Normalization 的作用后,其实后期演进的Instance Normalization [2]Layer Normalization、Group Normalization、Weight Normalization 在原理上的作用是相近的,都是为了稳定模型训练,只不过不同的归一化方法适用于不同的场合。
比如在做图像翻译时,往往设置的 BatchSize 为 1 或者模型训练时 BatchSize 取值很小,这个时候 Batch Normalization 在对这批数据取均值和方差,而这批数据由于量不够,很难描述整体数据,此时就可以尝试使用 Layer Normalization 或者 Group Normalization。


言归正传,回到本文的主题 Spatially-Adaptive Normalization (空间自适应归一化),已经有这么多好用的归一化方法了为啥还要 Spatially-Adaptive Normalization 呢?
说清这个问题前,我们要来看一下 Conditional Batch Normalization (CBN) [3],以图像和其标签为例,CBN 就是通过 BN 将图片底层信息和标签信息结合,这样处理的好处就是让图像的标签(语义信息)指导图像的特征表达。
这种标签信息往往是由热编码或者是低纬的向量通过感知层代替 BN 中的参数 γ 和 β,如果这个标签信息是一张语义分割图呢?这种输入到感知层的方式将不能充分表达图像的语义信息了,此时 Spatially-Adaptive Normalization 便派上用场了,它正是处理这种标签信息是一张语义分割图时如何让图像的标签(语义信息)指导图像的特征表达
  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值