通用大模型向左,角色大模型向右

本文介绍了角色大模型相对于通用大模型的特性,重点关注其在拟人化、共情力方面的优势。角色大模型在游戏、影视等领域的应用日益广泛,如Character.AI和通义星尘等平台提供了个性化角色定制服务。RoleEval和CharacterEval等评测基准的出现,为评估角色模型的性能提供了标准。百川智能的Baichuan-NPC模型在角色扮演领域表现出色,通过‘角色增强基座’和‘角色思维链对齐’技术解决了身份一致性问题,成为中文角色扮演的领先者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

468f7010447d50c470eb8376323c0fb1.gif

743d52d71a0bb736587bfbeb682de603.png

引言:角色大模型,更像栩栩如生的人

以 ChatGPT、GPT-4 为代表的通用大模型正涌现出人工智能模型前所未有的智能水平,为最终构建通用人工智能(AGI)奠定了坚实的基础,让我们无限憧憬奇点时刻的到来。同时,在大模型技术的激涌潮流中,基于角色大模型类人智能体技术(Humanoid Agent)的崛起也引起了广泛的关注 [1] [2]。

相较于通用大模型对智商的追求,角色大模型的研究者们专注于打造更加拟人化、具备强大共情力的角色智能体。这些智能体不再仅仅是冰冷的数据处理工具和问答机器人,而是各有人设、栩栩如生,宛如一位位良师益友。它们具备与用户建立深厚而长久连接的能力,为用户提供更加个性化、沉浸式的体验。

63a88abd287cbe42fd138cabebdddd3e.png

▲ Character.AI的“Books”类目中为用户提供了赫敏、哈利波特等耳熟能详的角色,和书中之人交谈不再是梦。

大模型技术的颠覆性发展使得角色深度个性化定制成为可能,正在为社交、游戏、影视等泛娱乐行业带来深刻的变革。在游戏领域,智能 NPC 的崛起使得游戏体验更加丰富,玩家可以与更智能、更具自主意识的虚拟角色进行更深层次的互动。

而在影视和网络文学行业,扮演 IP 角色的智能体使得用户心爱的角色摆脱原有情节的框架,在用户自定义的新场景中为其提供新鲜体验和持久陪伴。一些行业探索者,如 Character.AI [3] 和通义星尘 [4] 等,已经成功开发出初具规模的角色大模型定制平台。这些平台不仅提供数百个预定义的人设,还支持用户自定义全新的角色,给用户提供了更个性化、丰富多彩的虚拟互动体验,为下一代 UGC 社交内容平台的形态提供了丰富的想象空间。

05f0bf4eb9243bfc12e256b8a1917278.png

▲ 大热番剧《间谍过家家》的女主约尔太太,在Character.AI上对新用户还是像在剧里当刺客时一样高冷。

与强调问答的准确性、安全性,旨在构建“高智商通用助手”的通用大模型研发不同,角色大模型的研究更注重让模型“像栩栩如生的人”,立得住人设、陪得了用户。这要求模型不仅具备深厚的角色知识,保持一致的对话风格,还能够生动演绎角色的魅力,为用户提供充满新鲜感和情感价值的互动体验。对于角色模型所需的这些能力,国内甚至全球范围内尚缺乏系统、全面的评测基准。因此,角色大模型在训练和评测技术上面临着与通用大模型领域不同的独特挑战。

近日,在模型训练方面,百川智能的 Baichuan-NPC 和智谱的 CharacterGLM [5] 等在角色扮演领域的大模型研究工作,为业界带来了新的对齐技术;而在性能评测方面,RoleEval [6]、CharaceterEval [7] 等基准数据集的发布为系统评估角色大模型的角色一致性、吸引力、对话能力和性格测试等细粒度属性提供了丰富的资源。

本文将详细探讨这些角色大模型研究的最新进展,并通过在 RoleEval 与 CharacterEval 这两个基准上的评测结果,全面比较前沿大模型在角色扮演领域的性能。

值得注意的是,我们发现百川智能最新发布的 Baichuan-NPC 角色大模型,在其独特的“角色增强底座+角色思维链对齐”技术支撑下,在多个评测维度上表现出色,其中文角色扮演能力显著优于通用大模型的翘楚 OpenAI GPT-4 以及 MiniMAX、通义星尘等其他角色大模型,成为中文角色扮演领域的领先者。

据悉,百川智能不仅发布了角色大模型,还推出了包括角色创建平台、搜索增强知识库等配套生态体系,支持用户以零代码的方式轻松调试和部署角色大模型,为角色大模型的基础技术发展和产业应用做出了开创性的贡献。

651c1dc850ea4f541d21505fc1d2ff31.png

▲ 在开始正文之前,首先感受一下Baichuan-NPC作为最强中文角色模型的显著优势:在CharacterEval的对话能力、角色一致性、扮演吸引力三个维度都稳稳胜过GPT-4。

008e6c4bdd2ec5d5836944a4e10e3d4a.png

背景:角色大模型方兴未艾,急需评测基准与基础模型

在学术层面上,基于大模型的对话智能体(dialogue agent)可以被视为单个角色或多个角色的组合,采用角色扮演(role-play)的概念框架描述对话智能体的行为,有助于我们更精确地刻画、理解这些类人智能体的行为,并更好地开发挖掘它们的潜力 [1] [8]。


在应用层面上,角色大模型(role LLMs)指的是利用大模型模拟具有鲜明个性和对话风格的人物或角色,从而为用户提供比通用大模型更个性化、沉浸式的陪伴体验 [2] [9]。

ae2c61a6b15a906d683cd6a5bed2b258.png

▲ 角色大模型服务旨在满足用户定制需求,让模型做到“千人千面”,为每个用户扮演独特的角色。图片来自[2]。

在以 GPT 系列为代表的大模型崛起之前,AI 角色扮演已经引起广泛关注,微软的小冰机器人和 Replika 虚拟 AI 聊天软件等基于传统技术(规则系统和小型语言模型)的应用曾掀起过热潮。然而,由于当时语言模型的能力受限,这些类人智能体的对话流畅度不够,对角色人设的一致性保持也无法达到理想水平。 

### 构建基于大模型的聊天界面 构建一个基于大模型的聊天界面需要综合考虑用户体验、交互逻辑以及数据流管理。以下是关于如何设计和实现这一目标的关键要素: #### UI/UX 设计原则 为了提供良好的用户体验,聊天界面应具备简洁直观的设计风格。通常情况下,聊天窗口由以下几个部分组成: - **消息显示区域**:用于展示对话历史记录。 - **输入框**:供用户键入并发送消息。 - **发送按钮**:触发用户的输入提交操作。 对于不同来源的消息(如来自用户自身或大模型),可以通过调整布局来区分视觉效果[^3]。例如,“chatLine_mine”代表用户自己的发言样式,而“chatLine_other”则对应大模型回复的表现形式。两者主要区别在于头像位置——前者位于右侧,后者置于左侧。 #### 技术栈选择 在开发过程中可以选择多种技术和框架支持项目实施。前端方面推荐采用现代JavaScript库或者框架比如React.js, Vue.js等它们能够有效简化组件化编程流程提高可维护性和扩展能力同时也便于集成第三方服务API调用等功能模块。 后端服务器负责处理业务逻辑并与预训练好的大型语言模型进行通信获取智能化的回答内容然后返回给客户端渲染到界面上去完成整个闭环体验过程中的重要环节之一即实时性保障尤为关键因此建议选用WebSocket协议代替传统轮询方式从而降低延迟提升效率同时减少不必要的资源消耗情况发生几率达到优化性能的目的. 另外值得注意的是安全性考量同样不可或缺应当采取适当措施防止恶意攻击行为损害系统稳定运行状态比如说设置访问权限控制机制验证身份合法性等等手段相结合共同构筑起一道坚固防线保护敏感信息不被泄露出去造成不良后果影响正常使用感受度下降等问题出现。 #### 数据传输与接口对接 当涉及到实际应用场景下的具体实践操作层面时还需要特别关注一下几个方面的细节事项: 1. **请求封装**: 将向远程地址发起GET / POST 请求的动作抽象成通用函数方便后续重复利用节省时间成本; 2. **错误捕获**: 预先定义好可能出现的各种异常状况对应的解决方案以便快速定位问题所在及时修复恢复正常工作秩序; 3. **缓存策略**: 对于一些高频次查询但变动较小的数据项可以考虑引入内存级高速读写容器譬如Redis之类的工具产品作为中间层存储介质加快响应速度改善整体表现水平; 最后附上一段简单的伪代码演示如何通过axios库执行异步网络通讯任务: ```javascript const axios = require('axios'); async function fetchModelResponse(prompt){ try { const response = await axios.post('/api/generate', {prompt}); console.log(response.data); return response.data.text; // Assuming the API returns JSON with 'text' field. } catch (error) { console.error(`Error fetching model response: ${error.message}`); } } ``` #### 实际案例分析 如果想要进一步深入理解整个系统的搭建原理可以从官方文档入手学习更多专业知识点。例如Ollama平台提供了详细的本地部署说明指导开发者轻松拉取所需的大规模参数量级的语言生成器实例下来安装配置完毕之后即可投入使用参与各种类型的自然语言处理任务当中去了[^1]。与此同时还有许多开源社区贡献出来的宝贵资料可供参考借鉴其中包括但不限于理论基础讲解视频课程教材笔记等一系列丰富的内容集合在一起构成了完整的自学体系帮助初学者更快入门掌握核心技术要点[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值