本文是LLM系列文章,针对《JointLK: Joint Reasoning with Language Models and Knowledge Graphs for Commonsense Question Answering》的翻译。
现有的用于常识性问答的KG增强模型主要集中于设计精细的图神经网络(GNN)来对知识图(KG)进行建模。然而,它们忽略了(i)对问题上下文表示和KG表示的有效融合和推理,以及(ii)在推理过程中从有噪声的KG中自动选择相关节点。在本文中,我们提出了一个新的模型JointLK,该模型通过LM和GNN的联合推理以及动态KGs修剪机制来解决上述限制。具体来说,JointLK通过一种新颖的密集双向注意力模块在LM和GNN之间进行联合推理,其中每个问题标记都参与到KG节点上,每个KG节点都参与到问题标记上,两种模态表示通过多步交互相互融合和更新。然后,动态修剪模块使用联合推理生成的注意力权重递归地修剪不相关的KG节点。我们在CommonsenseQA和OpenBookQA数据集上评估了JointLK,并展示了它对现有LM和LM+KG模型的改进,以及它执行可解释推理的能力。