Joint Reasoning with Language Models and Knowledge Graphs for Commonsense Question Answering

74 篇文章 10 订阅 ¥99.90 ¥299.90
828 篇文章 3 订阅

已下架不支持订阅

本文介绍了JointLK,一种结合语言模型和知识图谱进行常识问答的方法。通过LM和KG的交互融合,减少了两种信息源的语义差距,增强了联合推理能力。动态修剪模块能有效删除无关子图,提供精确证据。实验表明JointLK在CommonsenseQA和OpenBookQA上优于其他方法,尤其在复杂推理任务中表现出色,可应用于实体链接、KG补全和推荐系统等领域。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《JointLK: Joint Reasoning with Language Models and Knowledge Graphs for Commonsense Question Answering》的翻译。

JointLK:基于语言模型和知识图谱的常识性问答联合推理


现有的用于常识性问答的KG增强模型主要集中于设计精细的图神经网络(GNN)来对知识图(KG)进行建模。然而,它们忽略了(i)对问题上下文表示和KG表示的有效融合和推理,以及(ii)在推理过程中从有噪声的KG中自动选择相关节点。在本文中,我们提出了一个新的模型JointLK,该模型通过LM和GNN的联合推理以及动态KGs修剪机制来解决上述限制。具体来说,JointLK通过一种新颖的密集双向注意力模块在LM和GNN之间进行联合推理,其中每个问题标记都参与到KG节点上,每个KG节点都参与到问题标记上,两种模态表示通过多步交互相互融合和更新。然后,动态修剪模块使用联合推理生成的注意力权重递归地修剪不相关的KG节点。我们在CommonsenseQA和OpenBookQA数据集上评估了JointLK,并展示了它对现有LM和LM+KG模型的改进,以及它执行可解释推理的能力。

摘要

1 引言

2 相关工作

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值