Transformers Can Do Arithmetic with the Right Embeddings

本文研究Transformer在算术任务中的性能,通过位置编码嵌入解决数字跟踪问题,实现了加法的长度泛化,并在加法、乘法和排序任务上取得突破。经过改进,模型在100位加法上达到99%准确率,且提升了多步骤推理任务的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Transformers Can Do Arithmetic with the Right Embeddings》的翻译。

摘要

transformer在算术任务中的糟糕性能似乎在很大程度上源于它们无法跟踪大跨度数字中每个数字的确切位置。我们通过在每个数字上添加一个嵌入来修复这个问题,该嵌入对其相对于数字开头的位置进行编码。除了这些嵌入本身提供的增强功能外,我们还表明,此修复还可以进行架构修改,如输入注入和递归层,从而进一步提高性能。
通过求解位置,我们可以研究Transformer的逻辑外推能力。他们能解决比训练数据中更大、更复杂的算术问题吗?我们发现,用一个GPU只在20位数字上训练一天,我们就可以达到最先进的性能,在100位加法问题上实现高达99%的准确率。最后,我们展示了算术方面的这些进步也带来了对其他多步骤推理任务的改进,包括排序和乘法。

1 引言

2 相关工作

3 实现加法的长度泛化

4 突破Transformer算法推理的极限

5 讨论和局限性

尽管LLM的能力已经发展到足以涵盖包括代码生成和数学推理在内的复杂任务,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值