Reinforcement Learning Enhanced LLMs: A Survey

本文是LLM系列文章,针对《Reinforcement Learning Enhanced LLMs: A Survey》的翻译。

摘要

本文调查了通过强化学习(RL)增强大型语言模型(LLM)这一快速增长领域的研究,强化学习是一种技术,它使LLM能够通过根据其输出质量以奖励形式接收反馈来提高其性能,从而使其能够生成更准确、连贯和符合上下文的响应。在这项工作中,我们对RLenhanced LLM的最新知识状态进行了系统回顾,试图巩固和分析该领域快速增长的研究,帮助研究人员了解当前的挑战和进展。具体来说,我们(1)详细介绍了强化学习的基础知识;(2) 引入流行的强化学习LLM;(3) 回顾了两种广泛使用的基于奖励模型的强化学习技术的研究:基于人类反馈的强化学习(RLHF)和基于人工智能反馈的强化教学(RLAIF);以及(4)探索直接偏好优化(DPO),这是一组绕过奖励模型直接使用人类偏好数据将LLM输出与人类期望相匹配的方法。我们还将指出现有方法的当前挑战和不足,并提出一些进一步改进的途径。这项工作的项目页面可以在我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值