本文是LLM系列文章,针对《Reinforcement Learning Enhanced LLMs: A Survey》的翻译。
强化学习增强LLMs:一项调查
摘要
本文调查了通过强化学习(RL)增强大型语言模型(LLM)这一快速增长领域的研究,强化学习是一种技术,它使LLM能够通过根据其输出质量以奖励形式接收反馈来提高其性能,从而使其能够生成更准确、连贯和符合上下文的响应。在这项工作中,我们对RLenhanced LLM的最新知识状态进行了系统回顾,试图巩固和分析该领域快速增长的研究,帮助研究人员了解当前的挑战和进展。具体来说,我们(1)详细介绍了强化学习的基础知识;(2) 引入流行的强化学习LLM;(3) 回顾了两种广泛使用的基于奖励模型的强化学习技术的研究:基于人类反馈的强化学习(RLHF)和基于人工智能反馈的强化教学(RLAIF);以及(4)探索直接偏好优化(DPO),这是一组绕过奖励模型直接使用人类偏好数据将LLM输出与人类期望相匹配的方法。我们还将指出现有方法的当前挑战和不足,并提出一些进一步改进的途径。这项工作的项目页面可以在我们