Transformers without Normalization

摘要

归一化层在现代神经网络中无处不在,长期以来一直被认为是必不可少的。这项工作表明,使用一种非常简单的技术,不含归一化层的Transformer也能达到相同甚至更好的性能。我们引入动态双曲正切(Dynamic Tanh, DyT),这是一种逐元素操作,即 D y T ( x ) = tanh ⁡ ( α x ) DyT(x)=\tanh(\alpha x)

### Layer Normalization in Transformer Models Explained In the context of deep learning, normalization techniques play a crucial role in stabilizing and accelerating training processes. For Transformer models specifically, layer normalization (LayerNorm) has been an integral component contributing to their effectiveness. #### Definition and Purpose Layer normalization operates across features within each individual example rather than over mini-batches as batch normalization does. This approach ensures that during inference or when using very small batches, performance remains stable because it relies on per-example statistics instead of batch-level ones[^1]. The primary function of LayerNorm is to reduce internal covariate shift by normalizing activations at every hidden layer. By doing so, this technique facilitates smoother gradients flow through layers which can lead to faster convergence rates during optimization procedures. #### Implementation Details For implementing layer normalization inside a Transformer architecture like SimpleTransformer mentioned earlier: At each position \(i\) along sequence length dimension, the mean \(\mu_i\) and variance \(\sigma^2_i\) are computed based only upon values from current token's embedding vector. Then apply standard score transformation followed by learnable affine parameters gamma (\(\gamma\)) & beta (\(\beta\)): \[y = \frac{x-\mu}{\sqrt{\sigma^{2}+\epsilon}}*\gamma + \beta\] Here’s how one might implement such functionality in Python with PyTorch library: ```python import torch.nn as nn class LayerNormalization(nn.Module): "Construct a layernorm module." def __init__(self, features, eps=1e-6): super(LayerNormalization, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 ``` This code snippet defines a custom `LayerNormalization` class inheriting from PyTorch's Module base class. It initializes two trainable parameters (`a_2`, `b_2`) corresponding respectively to scaling factor γ and shifting term β used after applying zero-mean unit-variance normalization operation element-wise over input tensor 'x'. #### Benefits Within Transformers Within Transformer architectures, incorporating layer normalization before residual connections helps mitigate issues related to vanishing/exploding gradient problems often encountered while stacking multiple attention sub-layers sequentially together without proper regularization mechanisms applied throughout network topology design phase[^2]. --related questions-- 1. How does Batch Normalization differ fundamentally from Layer Normalization? 2. Can you explain why Layer Normalization contributes positively towards reducing Internal Covariate Shift? 3. What specific challenges do Deep Neural Networks face due to Vanishing/Exploding Gradients problem? 4. In what ways have advancements beyond basic Layer Norm impacted modern NLP tasks leveraging large-scale pre-trained language models?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值