卡尔曼滤波跟踪自由落体的高度程序,带MATLAB例程

本文通过MATLAB应用卡尔曼滤波器(Kalman filters)来求解自由落体物体高度和速度随时间变化的最优估计。在假定高度测量误差为高斯分布的情况下,给出了初始高度h0和速度v0的高斯分布信息,并提供了实际的测量数据和完整的MATLAB源代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

已知一物体做自由落体运动,对其高度进行20次测量,测量值如下表:(g=9.80m/s2).
在这里插入图片描述
设高度的测量误差分布为: N(0, 1),该物体的初始高度h0和速度v0分布也为高斯分布,且:
在这里插入图片描述
试求该物体高度和速度的随时间变化的最优估计(matlab Kalman filters)。N(0, 1),该物体的初始高度h0和速度v0分布也为高斯分布,且:试求该物体高度和速度的随时间变化最优估计(matlab Kalman filters)

计算结果

在这里插入图片描述

程序源码

下述代码直接复制到MATLAB上面,可以直接运行:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值