点云处理中阶 Sampling

目录

一、什么是点云Sampling

二、示例代码

1、下采样  Downsampling

2、均匀采样

3、上采样

4、表面重建


一、什么是点云Sampling

点云处理中的采样(sampling)是指从大量点云数据中选取一部分代表性的数据点,以减少计算复杂度和内存使用,同时保留点云的几何特征和重要信息。常见的点云采样方法有以下几种:

  • 随机采样(Random Sampling)

    • 从原始点云中随机选择一定比例的点。
    • 优点:简单快速。
    • 缺点:可能会丢失重要的几何特征,采样结果不稳定。
  • 体素网格下采样(Voxel Grid Downsampling)

    • 将点云划分为固定大小的立方体网格(体素),然后在每个体素中用一个代表点(如体素中心或体素内点的平均值)来代替该体素内的所有点。
    • 优点:能有效保留点云的整体结构和几何特征,结果较稳定。
    • 缺点:可能会丢失细节信息,分辨率依赖于体素大小。
  • 均匀采样(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哦里 哦里哦里给

你的鼓支持是我分享的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值