扩散磁共振成像能否一致地识别人脑连接组中的关键节点?

近年来,扩散MRI被广泛用于映射人脑连接组,与此同时,数据处理和分析方法也在不断增多。然而,这些不同步骤及其影响很少被系统地比较。在本研究中,我们以294名健康青年人为样本,分析了一系列分析流程对人脑连接组的一个广泛研究特性——节点度分布——的影响。我们评估了40种分析流程(比较了常用的皮层分区方案、纤维追踪起始点设置、纤维追踪算法和纤维传播约束)和44种群组代表性连接组重建方案对高连接的"关键节点(hub)"区域的影响。我们发现,关键节点的位置在不同流程之间差异很大。皮层分区方案的选择对关键节点的结构有重大影响,在大多数评估的流程中(69%的流程中ρ > 0.70),尤其是在使用加权网络时,关键节点的连接性与区域表面积高度相关。总的来说,我们的结果表明,在处理扩散MRI数据时需要谨慎决策,并仔细考虑不同的处理选择如何影响连接组织。本文发表在Network Neuroscience杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)。

作者总结

      随着扩散MRI在白质连接映射中的使用增加,处理扩散数据的方法也有了相似的增长。在这里,我们评估了1760种流程变体中,扩散数据处理如何影响关键节点。许多处理流程没有表现出关键节点内的高度连接集中。当关键节点存在时,其位置和分布因处理选择而异。概率性或确定性纤维追踪的选择对关键节点的位置和强度有重大影响。最后,在加权网络中,节点强度可以与节点大小高度相关。总之,我们的结果说明了在处理和解释扩散MRI数据时需要谨慎决策。

关键词:扩散MRI, 结构连接, 脑网络关键节点, 纤维追踪, 皮层分区, 节点度

引言

     神经科学的一个主要任务是稳健且准确地映射人脑的连接(Sporns et al., 2005)。这些连接被认为在不同脑区之间呈现异质性分布,其中一些被称为"关键节点(hub)"的区域与其他区域有更强、更频繁的连接(Arnatkevičiūtė et al., 2021; Oldham et al., 2019; van den Heuvel & Sporns, 2013b)。关键节点连接被认为在支持协调的动态中起着不可或缺的作用(Mišić et al., 2015; van den Heuvel & Sporns, 2013a)。它具有独特的发育轨迹(Fan et al., 2011; Oldham et al., 2022; Oldham & Fornito, 2019);对认知功能很重要(Fagerholm et al., 2015; Sleurs et al., 2021);受到很强的遗传影响(Arnatkevičiūtė et al., 2018, 2019, 2021; Fulcher & Fornito, 2016);并与各种临床疾病有关(Crossley et al., 2014; de Lange et al., 2019; Fornito et al., 2015; Gollo et al., 2018)。在人类中,关键节点和非关键节点脑区的解剖连接性通常是通过对扩散磁共振成像(MRI)数据进行纤维追踪分析来映射的(Betzel & Bassett, 2017; Sotiropoulos & Zalesky, 2019)。此类分析的一个挑战是扩散MRI数据含有噪声,最终生成的纤维追踪连接估计(即纤维束)取决于许多不同的处理步骤,每个步骤都依赖于用户选择的多个选项(Jones & Cercignani, 2010; Oldham et al., 2020; Sarwar et al., 2021)。因此,不同的研究人员做出不同的选择,导致连接组模型源自以不同方式处理的数据。

       在众多可用的处理选择中,通常变化的步骤包括以下几点:用于在个体中设置纤维追踪起始点、传播和修剪纤维束的算法(Jeurissen et al., 2019; Sarwar et al., 2019);用于划分不同区域并促进计算可行性的皮层分区方案(Lawrence et al., 2021);以及用于生成群组代表性网络的方法(Betzel et al., 2019)。最近一项初步研究发现,改变预处理步骤可以将关键节点的位置从顶叶/扣带回皮层转移到颞叶皮层(Oldham et al., 2020)。其他工作同样发现,使用不同处理流程的研究组之间,纤维束重建的有效性差异很大(Maier-Hein et al., 2017)。关于人脑连接组关键节点的结构和功能的有效推断在很大程度上取决于我们可靠识别它们的能力,但尚未对连接组生成流程中的变化如何精确地影响网络关键节点的分类进行详细研究。在这里,我们评估了这些变化如何影响关键节点的识别,重点关注连接组生成流程中的三个关键步骤:纤维追踪算法、皮层分区和群组重建。

       纤维追踪是指根据各向异性水扩散生成白质纤维束的过程。作为一个具有许多不同步骤的间接连接标记(Jeurissen et al., 2019),它依赖于用户定义的参数,包括纤维束的起始位置、传播方式以及可以终止的位置。一个众所周知的重要选择是概率性纤维追踪和确定性纤维追踪之间的选择。在某些情况下,概率性纤维追踪已被证明与离体解剖纤维束解剖更为接近,而不是确定性纤维追踪(Lilja et al., 2014),而其他工作报告称概率性纤维追踪更容易产生假阳性连接(Sarwar et al., 2019)。事实上,不同纤维追踪算法的敏感性和特异性之间存在一般的权衡,与确定性纤维追踪相比,概率性纤维追踪的敏感性更高但特异性更低(Thomas et al., 2014)。此外,特定纤维追踪算法的使用可能与扩散MRI流程中的其他选择相互作用,进一步导致连接组的可变性。例如,Li et al. (2012)发现,当纤维束种子点(纤维束传播的起始位置)位于灰质-白质交界处而不是白质深部时,50%的关键节点会被重新分类。已有研究提出了区分保留解剖学上可能的纤维束的方法(Schiavi et al., 2020; Smith et al., 2012),并且已经表明,与模板生成的解剖相比,手动包含/排除给定束的纤维可以将重建精度从73%提高到91%(Schilling et al.,2020)。因此,改变用于在个体中生成纤维束的参数可能导致具有显著不同结构的连接组,这一现象尚未得到广泛的描述。

      皮层分区(用于定义作为网络节点的脑区之间边界的图谱)也是连接组结构可变性的一个来源。自Brodmann时代以来,这些分区一直在不断修订(Brodmann, 1909; Zilles, 2018),用于生成它们的方法差异很大(Arslan et al., 2018)。例如:分区已经通过基于沟回解剖结构的手动分割生成(Desikan et al., 2006);使用基于功能连接的网络模型(Schaefer et al., 2018);以及基于解剖、微观结构和功能特征的多模态组合(Genon et al., 2018; Glasser et al., 2016; Wang et al., 2015)。由于划分区域数量的差异(Fornito et al., 2010; Zalesky et al., 2010)、区域表面积的可变性(Van Essen et al., 2012)以及半球间的(非)对称性(Yan et al., 2023),分区也很难进行比较。

      在构建了个体的连接组之后,通常的做法是聚合数据以得出群组代表性网络(de Reus & van den Heuvel, 2013a; Yeh et al., 2016)。在这个阶段,重要的是定义应该保留哪些连接(边),以及如何对这些连接进行加权。已经有不同的方法被提出用于前者:包括保留在个体之间最强或最常出现的边(de Reus & van den Heuvel, 2013a),保留在人群中最不可变的边(Roberts et al., 2017),或者保留在不同距离区间中保持特定比例连接的边(Betzel et al., 2019)。这些方法的方法学差异使问题复杂化,所使用的特定阈值通常是启发式选择的(Bordier et al., 2017),这使得比较使用不同阈值的研究变得困难。

      在这里,我们比较了在这三个关键步骤:纤维追踪、分区和群组重建中不同选择对294名健康青年人样本中关键节点连接特性的影响。在每个步骤中检查的不同选项导致了1,760个不同的群组代表性连接组。我们评估了每个选择对二值化和加权节点度量的影响,因为这些度量是许多其他网络度量和网络关键节点定义的基础。特别地,我们关注节点度量在节点之间的分布及其空间拓扑,评估关键节点定位于相同解剖位置的一致性。

方法

参与者

      294名健康参与者(平均年龄23.12±5.18岁,162名女性)在知情同意的情况下在莫纳什大学招募。所有参与者自我报告为右利手,并报告没有明显的神经/精神病史(即没有神经或精神疾病的个人史,没有因头部受伤而导致的意识或记忆丧失,没有药物使用障碍史)。关于样本特征的更多信息在其他地方提供(Sabaroedin et al., 2019)。该研究按照莫纳什大学人类研究伦理委员会要求进行。

图像采集

      在澳大利亚维多利亚州克莱顿的莫纳什生物医学成像中心,使用配备32通道头部线圈的西门子(慕尼黑,德国)Skyra 3T扫描仪采集了T1加权(T1w)和扩散MRI。T1w结构扫描采用以下参数:1 mm3各向同性体素,TR=2,300 ms,TE=2.07 ms,TI=900 ms,FOV为256 mm。使用交错采集获得扩散扫描,参数如下:2.5 mm3各向同性体素,TR=8,800 ms,TE=110 ms,FOV为240 mm,60个方向,b=3,000 s/mm2,7个b=0 s/mm2 vol。此外,获得了一个b=0 s/mm2的相位编码方向反转的图像,用于磁化率场估计。

所有流程共有的图像处理

      使用MASSIVE高性能计算基础设施(Goscinski et al., 2014)处理成像数据,如Oldham et al. (2020)所述。该分析评估了240种不同扩散MRI处理流程在减轻与运动相关的伪影对连接估计的影响方面的效力,这些流程是通过在七个步骤(畸变校正、纤维追踪算法、传播约束、纤维束设置种子点、纤维束重新加权、边加权和分区)中的每一个步骤中改变选择而生成的。我们采纳了Oldham et al. (2020)对其中三个步骤(畸变校正、纤维束重新加权和边加权)的建议,因为这些步骤中的特定选项已被证明可以减少头部运动与结构连接之间的相关性。我们评估了其余四个因素的影响,其中三个与纤维追踪算法有关(概率性与确定性算法、传播约束、纤维束设置种子点),最后一个与分区有关。我们进一步考虑了这些步骤如何与不同的阈值和群组聚合方法相互作用。图1展示了我们流程变化的视觉示意图。以下部分提供了在每个步骤中所做选择的更多细节。

DWI和T1w预处理。

     使用MRtrix版本3.0.15(Tournier et al., 2019)和FSL版本5.0.11(Jenkinson et al., 2012)处理扩散MRI数据。首先,使用正向和反向相位编码的b=0 s/mm2图像,使用FSL的topup估计磁化率诱导的共振失调场(Andersson et al., 2003; Smith et al., 2004)。然后,使用FSL的eddy工具进行运动和涡流校正,该工具已被证明可以成功减轻连接估计中与运动相关的伪影(Oldham et al., 2020),并结合了(i)基于高斯过程的生成模型,用于体积(volume)预测和重新对齐(Andersson & Sotiropoulos, 2016),以及(ii)对具有显著信号丢失的切片进行重建和替换(Andersson et al., 2016, 2017)。切片到体积校正使用以下参数:运动的时间顺序=30,迭代次数=5,时间正则化强度=6,三线性插值。最后,使用FSL中的FAST校正B1场不均匀性(Smith et al., 2004; Zhang et al., 2001)。

    然后,使用FSL的FLIRT通过刚体变换将扩散图像与T1w图像进行共配准(Jenkinson et al., 2002; Jenkinson & Smith, 2001),并使用该变换的逆将T1w图像映射到受试者的原始扩散空间,在该空间中执行所有纤维追踪。使用FreeSurfer 5.3版(Fischl, 2012)从T1w图像中提取皮层表面模型(灰/白质表面和灰质/脑脊液表面)。视觉检查所有输出,并在需要时进行手动校正。将分区方案(详见"分区"部分)应用于皮层表面模型;然后将其投影到T1w图像网格,并用于定义网络节点。

特定流程的图像处理

在本节中,我们概述了分析中考虑的关键流程变化。

纤维束种子点设置算法。

     纤维束种子点设置是选择体素作为纤维束传播点的过程。与Oldham et al. (2020)一样,我们比较了三种纤维束种子点设置算法:

      1.白质(WM):随机选择编码为白质的体素作为纤维束种子点。

      2.灰质-白质交界面(GMWMI):选择包含灰质和白质之间梯度的体素作为纤维束种子点,目的是改善较短纤维的纤维追踪(Smith et al., 2013, 2015a)。

      3.动态:使用基于弥散模型预测的纤维密度与当前密度之间的相对差异来告知选择特定位置作为种子点的概率,目的是校正给定纤维束的欠采样或过采样(Smith et al., 2015b)。

纤维束追踪算法

     大多数纤维追踪算法被归类为确定性或概率性算法。确定性算法往往更保守,因此容易出现假阴性,而概率性算法更敏感,但可能容易出现假阳性(Reveley et al., 2015; Sarwar et al., 2019; Thomas et al., 2014)。我们比较了每个类别的一个示例。两种方法都在MRtrix3中实现(Tournier et al., 2019):

     1.使用连续纤维束追踪的纤维分配(FACT)算法执行确定性纤维追踪(Mori et al., 1999; Mori & van Zijl, 2002)。

      2.使用纤维取向分布上的二阶积分(iFOD2)执行概率性纤维追踪(Tournier et al., 2007, 2010, 2012)。

       对于两种纤维追踪算法,生成了2,000,000条纤维束,最大长度为400 mm,每步最大曲率为45°,默认步长(FACT为1.25 mm;iFOD2为0.25 mm),以及默认终止标准(FACT的主特征向量振幅为0.05;iFOD2的FOD振幅为0.05)。

纤维束传播约束

      纤维追踪算法通常会追踪纤维束穿过解剖学上不合理的区域(例如脑室),这可以通过对纤维束传播施加一些约束来解决。我们检查了两个空间约束:

      1.灰质和白质掩模(GWM),涉及使用二值掩模(结合来自FreeSurfer分割的灰质和白质掩模),确保纤维束只通过脑实质。

     2.解剖学约束的纤维追踪(ACT),它使用多组织分割(皮层灰质、皮层下灰质、白质和脑脊液)和一系列传播规则来确保纤维束遵循解剖学上可行的路径(Smith et al., 2012)。

     由于MRtrix3中GMWMI(灰质-白质交界面)设置种子点的实现需要ACT(解剖学约束的纤维追踪),因此排除了结合GWM和GMWMI的流程。因此,上述组合总共产生了10个不同的纤维追踪工作流程进行比较。

分区

      在连接组学文献中使用了各种各样的分区方案(Arslan et al., 2018; de Reus & van den Heuvel, 2013b; Lawrence et al., 2021)。所使用的特定分区可以影响各种网络特性(Eickhoff et al., 2015; Fornito et al., 2010; Zalesky et al., 2010)。我们比较了使用三种不同方法得出的四种不同的皮层分区方案:

      1.Desikan-Killiany分区(DK68),每个半球包含34个皮层节点,使用沟回地标划分(Desikan et al., 2006)。

      2.人脑连接组计划MMP1分区(HCP360),每个半球包含180个皮层节点,使用半自动流程定义,该流程利用区域皮层结构、功能、连接和拓扑的信息(Glasser et al., 2016)。

    3.Schaefer等人(Schaefer et al., 2018)的200和500节点分区(S200和S500),基于区域功能耦合估计中全局轮廓相似性的局部梯度生成。

      这些分区代表了(i)依赖不同生物学特性的不同技术和方法学方法,以及(ii)生成的分区大小和形状的多样性。每个分区都是使用FreeSurfer使用fsaverage坐标估计的表面模型生成的;这些模型被配准到每个个体的表面,然后投影到T1w体积(volume)。10个纤维追踪工作流程和4个分区的组合总共产生了40个重建个体连接组的流程。

群组聚合

     使用上述参数生成个体连接组后,我们比较了四种聚合数据以获得群组代表性连接组的方法:

     1.边权重,保留具有最大平均权重的边,直到指定的密度。

     2.边变异系数(CV),保留参与者之间CV最小的边(Roberts et al., 2017),直到指定的密度。

     3.边一致性,保留在最多参与者中存在(即具有非零权重)的边(de Reus & van den Heuvel, 2013a),直到指定的密度。虽然这种方法可以通过选择特定的一致性阈值来制定,但在这里我们等价地指定密度阈值并保留最一致的边,以确保连接组密度匹配,这有助于跨流程的比较(参见"群组阈值"部分)。

      4.边距离相关分箱,使用指定数量的分箱根据边的长度对边进行分箱,并保留每个分箱中最频繁出现的边(Betzel et al., 2019)。

      请注意,对于每种方法,保留边的最终权重等于所有参与者边权重的平均值;只有选择保留哪些边会发生变化。

群组阈值

      使用上述方法之一生成群组连接组后,我们使用两种方法之一在不同水平对结果矩阵进行阈值处理,具体取决于聚合方法:

      1.密度阈值用于使用边权重、边CV和边一致性聚合的群组连接组,根据每个度量保留排名最高的边,评估的密度范围为5%到30%,增量为2.5%。

     2.分箱数用于使用边距离相关分箱生成的群组连接组,其中我们将分箱数从10更改为110,增量为10。一般来说,增加分箱数会增加群组连接组的密度,产生的网络密度范围为2%到94%。请注意,在评估网络属性如何依赖于连接组密度时,以这种方式生成的连接组被单独评估。

       四种群组聚合方法和每个阈值的11个阈值的组合总共产生了44个用于比较的群组重建方案。

统计分析

      我们首先评估上述处理选择如何影响连接组度分布的特性。度分布定义了连接在网络枢纽中的集中程度。具有重尾的分布意味着存在高度连接的枢纽,而具有近似指数衰减的分布意味着假定枢纽上的连接集中度不超过随机网络的预期(Fornito et al., 2016)。因此,我们专注于分布尾部的特性。脑网络中二值和加权节点度的分布先前被描述为重尾(这里指的是尾部衰减速度低于指数),但它们遵循的精确分布一直是争论的主题(Buzsáki & Mizuseki, 2014; Fornito et al., 2016; Roberts et al., 2015; Zucca et al., 2019)。此外,这些分布的参数建模依赖于用户定义的输入,例如考虑的模型选择或使用的模型拟合程序,在比较计算流程时导致另一个变异源。

     将经验度分布拟合到广义极值分布并获得尾部衰减指数可以缓解这些问题(Gomes & Guillou, 2015; de Haan & Ferreira, 2006; Hill, 1975)。然而,这种方法通常需要大量数据点(Németh & Zempléni, 2020),并且仍然依赖于启发式度量来定义尾部的开始和结束(Bauke, 2007; Gomes et al., 2009; Paulauskas & Vaičiulis, 2017)。因此,我们使用Jordanova和Petkova(2017)描述的非参数方法,该方法更直接地关注重尾性问题。

       简而言之,为了确定一个随机变量X的分布是否比指数分布具有更重的右尾,我们计算经验第一和第三四分位数,分别为Q̂1和Q̂3,以及四分位距IQ̂R=Q̂3-Q̂1。然后,我们将分布的"右尾度"定义为从分布中随机抽取的观测值大于Q̂3+3IQ̂R的概率(即pR(X)=P(X>Q̂3+3IQ̂R)),利用了极端异常值的常用定义(McGill et al., 1978)。该值可以与指数分布(X∼e^(-λx))的右尾度进行比较,指数分布的右尾度与形状参数λ无关,因此pR(X)=exp(-λ·ln(33·4)/λ)=1/108≈0.009(Jordanova & Petkova, 2017)。这个解析解提供了一个方便的阈值,用于确定一个分布是否比指数分布具有更重的右尾,如果经验pR>0.009,则意味着分布有重尾。

     此外,我们使用偏度(第三标准化矩)量化整个分布的不对称性,偏度对于指数分布也是常数(偏度 = 2)。最后,为了完整性,我们计算了超额峰度(第四标准化矩),它提供了一种捕捉尾部行为的替代方法(DeCarlo, 1997; Westfall, 2014)。这种度量已被证明对于检测小样本中的异常值是稳健的(Hayes et al., 2007; Livesey, 2007),并且也独立于指数分布的形状参数(超额峰度 = 6)。我们注意到还有其他可用的方法,包括尾部指数估计(Caers & Dyck, 1998; Németh & Zempléni, 2020)、参数拟合(Zucca et al., 2019)和无偏度峰度度量(Critchley & Jones, 2008; Eberl & Klar, 2022; Jones et al., 2011; Oja, 1981)。然而,与参数建模一样,这些方法依赖于用户定义的算法或参数(例如要使用的分位数或尾部初始化的截止点),同样使得比较困难。

      在描述度分布的统计特性之后,我们通过考虑度序列来检查区域间连接的空间分布。度序列编码将度值分配给特定节点,从而捕捉网络枢纽的空间位置或拓扑。在分区内,我们比较了枢纽拓扑的一致性和表面积对枢纽性的影响。在分区之间,我们定性地检查了不同流程中枢纽拓扑的一致性,因为缺乏区域到区域的对应关系排除了直接比较。

结果

     我们独立改变的处理步骤总结在图1中。总共,我们比较了1,760个不同的流程。这个集合包括生成个体连接组的40个流程(10个纤维追踪工作流程和4个分区方案)以及重建群组代表性连接组的44个流程(4种群组聚合方法和11个密度阈值)。结果部分的组织如下:首先,我们检查不同处理步骤对加权度分布的统计特性的影响。其次,我们比较了不同流程中节点度的空间分布。最后,我们检查每个分区的特定属性如何与节点度相关联。在正文中,我们重点分析加权节点度(也称为节点强度)分布,并在支持信息中报告未加权(二值)分布的结果。

图片

图1.群组连接组构建中使用的处理步骤。外部灰色框对相关步骤进行分组,内部灰色框表示所有流程中的共同步骤,蓝色框表示比较了多个选项的步骤。前三个框(扩散处理、结构处理和纤维追踪)指的是在一个个体内重建流线的过程。第四个框(群组连接组构建)指的是使用个体的连接组矩阵生成群组代表性连接组的过程。请注意,结构处理也用于指导个体网络重建。

DWI =扩散加权成像;ROIs =感兴趣区域;FACT =连续纤维追踪的纤维分配;iFOD2 =纤维取向分布的二阶积分。

节点度分布的统计特性

      图2显示了节点强度分布的特性如何随分区和纤维追踪参数而变化。为简单起见,我们关注在20%连接密度下阈值化并使用边变异系数(CV)聚合的网络,因为不同的密度阈值和聚合方法并没有显著改变分布的形状(图S1-S4)。我们关注三个关键特性,它们量化了经验度分布相对于指数分布的尾部衰减:右尾性(Jordanova & Petkova, 2017)、偏度和超额峰度(详见方法)。指数分布通常被定义为重尾分布的截止点(Foss et al., 2013),因此是评估枢纽节点中的连接集中度是否超过单尺度网络的基准(Amaral et al., 2000)。异常值的分布(右尾性)以及第三和第四标准化矩(偏度和峰度)先前被描述为捕捉统计分布中的尾部行为(DeCarlo, 1997; Jordanova & Petkova, 2017; Westfall, 2014)。它们对于指数分布也是参数不变的(右尾性≈0.009,偏度=2,超额峰度=6),允许对重尾性进行不受用户定义参数偏差的评估。

图片

图2 处理对加权连接组强度分布的影响。

(A)从评估的10个纤维追踪工作流程和4个分区方案中的每一个得到的节点强度分布。这里,使用边变异系数(CV)和20%的连接密度重建群组连接组。

(B, C)每个分区中强度分布的右尾性(B)和偏度(C)作为纤维追踪和密度阈值的函数。这里,使用边CV重建群组连接组,带框的行对应于面板A中的数据。冷色/暖色范围对应于小于/大于指数分布的偏度和右尾性。灰色/黑色/桃色键表示在每个工作流程中使用的处理选项,该步骤的可能选项用颜色编码;更多细节见"特定于流程的图像处理"部分。

分区:DK68 = Desikan-Killiany 68个节点,S200 = Schaefer 200个节点,HCP360 = Glasser 360个节点,S500 = Schaefer 500个节点。

纤维追踪:ACT =解剖约束纤维追踪,GWM =灰白质掩蔽;Seed =流线播种算法,dynamic =动态播种,WM =白质播种,GMWMI =灰质-白质界面播种;FACT =连续纤维追踪的纤维分配,iFOD2 =纤维取向分布的二阶积分。

      图2A表明,所有流程变体在定性上都显示出一些偏度和重尾的证据。DK68和HCP360分区显示最大的正偏度,而S200和S500分区显示的尾部要小得多,这与发现非常高度连接的枢纽的可能性较低一致。例外是使用工作流程3(ACT/WM播种/FACT),它在所有分区中都显示出延长的尾部。

      节点强度分布的右尾性和偏度分别如图2B和2C所示,作为分区、工作流程和连接密度的函数;1,760个流程中的692个(39%)具有比等价指数度分布更多的右侧异常值(图S2)。偏度总是正的(图S3),范围在0.42到6.04之间。然而,只有25%的流程(1,760个中的432个)表现出比指数分布(偏度=2)更大的偏度。超额峰度(图S4)在94%的流程(1,760个中的1,654个)中大于0(即比高斯分布更尖峻),在25%的流程(1,760个中的445个)中大于6。因此,尽管人们普遍认为连接组包含网络枢纽,这一特性应该反映在重尾度分布中,但根据如何量化重尾性,只有约25%到40%的处理流程显示出与这一假设一致的分布特性。

       图2B和C中还有三个关键发现。首先,纤维追踪算法对节点强度分布的特性有重大影响,只有在特定处理步骤与确定性纤维追踪(FACT)组合时才能获得偏斜、重尾分布的证据。更具体地说,当将FACT与ACT结合使用时(工作流程1、3和5),观察到最偏斜的分布,额外使用白质播种产生最高的偏度(工作流程3)。这种效应在连接密度上很明显,无论使用何种群组聚合方法都会持续(图S2-S4)。相比之下,只有当与HCP360分区结合使用时,概率纤维追踪(iFOD2)才会产生右尾分布的证据。

      图2B和C中的第二个关键发现是分区类型影响强度分布。无论使用何种处理步骤,使用HCP360分区的连接组的偏度、峰度和右尾性通常都高于其他分区。在一定程度上,这可能是由于HCP分区区域之间已知的大小差异所致,我们将在"区域表面积变化的影响"部分中更详细地检查这一点。只有在使用HCP360分区进行所有使用概率纤维追踪的流程时,偏度、峰度和右尾性才超过指数分布。

      图2B和C中的第三个关键发现是,随着连接密度的变化,偏度和右尾性变化很小。因此,连接密度对加权连接组强度分布的尾部没有很大影响。

      二值化连接组的结果相对于加权连接组显示出一些差异(图S5-S8)。具体而言,当不同的数据处理参数变化时,二值化连接组的偏度、右尾性和峰度比加权连接组更稳定。只有2.1%的连接组(1,760个中的37个)比指数分布更偏斜(全部使用HCP360分区;图S6)。类似地,2.2%(1,760个中的39个)更尖峭(图S7),6.2%(1,760个中的109个;图S8)显示出比指数分布更大的右尾性证据。值得注意的是,二值化连接组的偏度对连接密度的变化更敏感,特别是当使用HCP360分区时使用边一致性和基于CV的阈值化。在这些特定情况下,分布在5-10%的阈值下显示出超指数偏度和右尾性,但在20-30%的阈值下没有。使用HCP360以外的分区的连接组中强偏度、峰度或右尾性的证据很弱,只在极少数情况下出现。

      我们对强度分布的分析表明,关于连接在多大程度上集中在网络枢纽中的结论可能会根据数据处理方式的不同而有很大差异,其中纤维追踪算法(即确定性或概率性)和分区类型的影响尤其大。我们现在将注意力转向不同的处理选择如何影响度的空间嵌入。也就是说,我们评估不同的流程是否产生位于一致解剖区域的网络枢纽。

节点度序列的地形特性

      对于每个分区,我们首先计算每对流程之间的度分布的偏相关,控制区域表面积。结果矩阵(每个分区一个)表示纤维追踪工作流之间枢纽性的空间位置的相似性。使用这些矩阵的层次凝聚聚类将相似的流程分组在一起(图3A-D)。以S200分区为例,图3B显示,工作流程对之间的节点强度相关性存在显著差异,范围为-0.11 < ρ < 1.00,平均值为0.47(图3E)。根据先前的工作(Oldham et al., 2020),有两个大的簇是明显的,将使用确定性纤维追踪的工作流程与使用概率纤维追踪的工作流程分开。对应于确定性纤维追踪的簇内的平均相关性为0.64(0.19 < ρ < 1.00),概率纤维追踪簇内为0.67(0.32 < ρ < 0.99),簇间的平均相关性为0.30(-0.11 < ρ < 0.57)。在确定性纤维追踪簇内,作为空间约束(即ACT与GWM)的函数,有进一步的分裂,根据播种策略进一步细分。在概率纤维追踪簇内,也可以将较小的簇定义为空间约束和播种策略的函数,但这些子簇比确定性纤维追踪簇中的子簇更不均匀。基本簇结构在分区之间基本一致,有一些小的变化。例如,使用DK68图谱,使用动态播种、概率纤维追踪和灰白质掩模(工作流7)生成的连接组形成了自己的子簇。群组聚合算法和阈值密度对聚类的影响最小(图S9)。

图片

图3每个分区的纤维追踪工作流之间的比较。每个分区中纤维追踪工作流和群组重建度量之间的度分布的相似性:(A) DK68,(B) S200,(C) HCP360和(D) S500,密度为20%。每个热图显示了偏相关,并对表面积进行了校正。使用分层聚类对流程进行重新排序。流程编号指的是纤维追踪参数;每个流程出现三次,因为比较了三个密度匹配的群组重建阈值度量。灰色/黑色/桃色键表示在每个工作流程中使用的处理选项,该步骤的可能选项用颜色编码;更多细节见"特定于流程的图像处理"部分。(E) 每个热图内相关系数的分布。每一行代表一个分区。第一列显示每个热图中相关系数的频率。后续列显示仅比较确定性管线时(第二列)、仅比较概率管线时(第三列)以及仅比较确定性与概率管线时(第四列)的相关系数子集。

分区:DK68 = Desikan-Killiany 68个节点,S200 = Schaefer 200个节点,HCP360 = Glasser 360个节点,S500 = Schaefer 500个节点。纤维追踪:SptlCons =流线传播的空间约束,ACT =解剖约束纤维追踪,GWM =灰白质掩蔽;Seed =流线播种算法,dynamic =动态播种,WM =白质播种,GMWMI =灰质-白质界面播种;TractAlgor =流线纤维追踪算法,FACT =连续纤维追踪的纤维分配,iFOD2 =纤维取向分布的二阶积分。群组聚合:ThrMetric =群组重建阈值度量,Weight =边权重,CV =边变异系数,Con =边一致性。

       图4显示了节点强度的空间分布如何在工作流和分区之间变化。首先,对于固定的分区(例如S200分区),在不同处理变化下,假定枢纽的位置在地图之间有相当大的变化。当使用确定性纤维追踪(FACT)时,最高强度的节点位于旁中央小叶和辅助运动区附近,而当使用概率纤维追踪(iFOD2)时,则位于初级视觉区域。ACT/WM/FACT(工作流3)组合相关的增强偏度在这些地图中也很明显。值得注意的是,DK68和HCP360图谱似乎对处理变化更稳健,这可能是由于构成这些图谱的分区大小的大变异性所驱动。我们将在下一节中更详细地考虑这个问题。

图片

图4每个皮层分区和纤维追踪工作流的节点强度空间图。为了视觉目的,每个图像的颜色图都是独立缩放的。群组重建使用边变异系数(CV)和20%的密度。灰色/黑色/桃色键表示在每个工作流程中使用的处理选项,该步骤的可能选项用颜色编码;更多细节见"特定于流程的图像处理"部分。

分区:DK68 = Desikan-Killiany 68个节点,S200 = Schaefer 200个节点,HCP360 = Glasser 360个节点,S500 = Schaefer 500个节点。

纤维追踪:SptlCons =流线传播的空间约束,ACT =解剖约束纤维追踪,GWM =灰白质掩蔽;Seed =流线播种算法,dynamic =动态播种,WM =白质播种,GMWMI =灰质-白质界面播种;TractAlgor =流线纤维追踪算法,FACT =连续纤维追踪的纤维分配,iFOD2 =纤维取向分布的二阶积分。

       其次,对于固定的工作流,图4显示了不同分区之间的变化。由于缺乏区域到区域的对应关系,这种跨分区的比较只能定性进行。再一次,关于枢纽区域位置的结论差异很大。DK68图谱的最高强度节点位于内侧前额叶皮层(PFC),而在其他分区中,这个区域的强度相对较低。S200、HCP360和S500分区显示出更高的一致性,较高强度的节点位于视觉、外侧前额叶、前脑岛和下顶叶区域。这些分区之间的主要差异在于初级感觉运动皮层,在HCP360中强度较高,但在S200或S500分区中强度较低。对于给定的分区和纤维追踪工作流,群组聚合算法和阈值密度对节点强度排名的影响很小(图S10)。

      图S11和S12比较了不同纤维追踪工作流、群组重建和密度下节点秩变异性的空间分布。随着纤维追踪工作流的改变,相对节点排名可能会发生巨大变化(图S11)。虽然中间节点是最可变的,但前10-20%节点的排名也非常不一致。例如,在30个密度匹配的群组重建连接组中,平均排名第4的节点可以在第1到43名之间变化;类似地,平均排名第10的节点可以在第2到54名之间变化。我们还评估了一个示例性纤维追踪工作流在群组重建变化下的节点秩变异性(图S12)。虽然结果与图S11中的结果定性相似,但在这个分析中,变异性的幅度要小得多。当与图3一起考虑时,这个结果表明,节点排名的大部分方差是由纤维追踪工作流驱动的,而不是群组重建。

      二值化连接组中节点度分布之间的相似性如图S13和S14所示。结果显示,在所有分区中,概率纤维追踪和确定性纤维追踪之间存在主要差异(图S13)。最强节点的位置同样多变:例如,使用S200分区时,最高度节点一直位于脑岛,但使用FACT时,其他高度节点位于枕叶皮层,而使用iFOD2时,则位于颞叶区域(图S14)。

      在某些情况下,分区对节点强度的影响似乎与节点表面积有关(这里,节点表面积定义为所有参与者给定节点的平均表面积)。例如,DK68和HCP360分区观察到最偏斜的强度分布,这些分区的区域表面积方差比S200和S500分区大得多(图S15)。此外,DK68分区中的内侧PFC属于上额叶回解剖标签,这是该分区中最大的区域。在其他分区中,内侧PFC被细分为更小的分区。从图4中也可以明显看出,DK68和HCP360图谱的度序列对处理变化相当稳健,值得注意的是,这些图谱的区域表面积方差最大。具有较大表面积的区域将能够容纳更多的进出连接,因此我们应该期望节点强度/度与表面积相关。这引起了一种可能性,即节点度主要由区域大小变化驱动,特别是在分区表面积方差较大的图谱中。因此,在下一节中,我们将通过跨分区、工作流和群组重建方法将节点强度与表面积相关联,来检查给定分区中节点的大小在多大程度上决定其枢纽性。

区域表面积变化的影响

     图5A显示了两个示例分区和工作流组合(S200 + GWM/动态播种/iFOD2和HCP360 + ACT/GMWMI/FACT)获得的节点强度空间图,图5B显示了每个节点表面积与强度之间关联的散点图。图5C显示了使用边CV的S200和HCP360分区的所有纤维追踪参数和阈值密度的相关系数(所有纤维束/分区/群组重建都在图S16和S17中)。在所有处理和分区组合中,节点强度与节点表面积之间的相关性跨越0.10 < r < 0.96的范围,中位数为0.82。使用概率纤维追踪(iFOD2)的流程的相关性都在r = 0.78以上,中位相关系数为0.88。无论阈值算法或连接密度如何,这种高相关性都会持续(图S16)。使用确定性纤维追踪(FACT)的流程的相关性略低,中值为0.67(0.10 < r < 0.91)。当使用Schaefer分区(S200或S500)或ACT/WM/FACT的组合(或两者兼有)时,节点强度和表面积之间的关系略微减弱(图S16和S17)。请注意,虽然节点强度与节点表面积高度相关,但个别边并非如此:图S18显示,个别边的权重与其端点节点的总表面积无关。

图片

图5节点强度和节点表面积之间的关系。

(A)两个示例分区/纤维追踪工作流中节点强度的空间图。在这个例子中,连接密度为20%,使用边变异系数(CV)构建群组连接组。为了便于可视化,只显示左半球。

(B)面板A中所示所有节点的节点强度与节点表面积之间的关系。

(C)节点强度和节点表面积之间的Pearson相关系数作为纤维追踪工作流和密度阈值的函数。轮廓区域(方框)对应于面板B中的图。灰色/黑色/桃色键表示在每个工作流程中使用的处理选项,该步骤的可能选项用颜色编码;更多细节见"特定于流程的图像处理"部分。

(D)当面板B中的线性关系被移除时,残差强度的空间图。

(E)面板D中所示残差强度与面板A中所示原始强度之间的关系。

(F)面板D中所示残差强度和面板A中所示原始强度的频率分布。

分区:S200 = Schaefer 200个节点,HCP360 = Glasser 360个节点。

纤维追踪:SptlCons =流线传播的空间约束,ACT =解剖约束纤维追踪,GWM =灰白质掩蔽;Seed =流线播种算法,dynamic =动态播种,WM =白质播种,GMWMI =灰质-白质界面播种;TractAlgor =流线纤维追踪算法,FACT =连续纤维追踪的纤维分配,iFOD2 =纤维取向分布的二阶积分。

      接下来,我们研究了消除节点强度对大小的依赖性是否会改变前者的空间分布。图5D显示了通过线性回归消除区域表面积依赖性后获得的残差节点强度值的空间分布示例。在S200分区中,残差最高的节点往往是原本中高强度的节点(例如,脑岛和下颞回)。因此,最强连接节点的位置大致相似。相比之下,在HCP360分区中,后顶叶皮层和补充运动区皮层相对于表面积显示出不成比例的高强度。

      残差与每个节点原始强度之间的关系如图5E所示。残差与原始强度保持高度相关(所有管道的平均相关性r = 0.63±0.20)。虽然残差的分布可能在位置(平均值)和尺度(方差)上发生变化,但偏度、右偏度和峰度都得以保持(图5F)。对所有分区和群组重建得到了定性相似的结果(图S19)。

      图S20显示了二值化连接组中节点表面积和度之间的关系。与加权节点强度类似,使用概率纤维追踪时相关性比使用确定性纤维追踪时更强。与节点强度相比,二值节点度通常与表面积的相关性较低,但对阈值密度的依赖性大于加权连接组(图S20)。在所有分区和工作流中,中位相关系数为0.44(加权连接组为0.82)。然而,随着连接密度的增加,这种关系减弱了。例如,在Schaefer分区(S200和S500)中,只有当密度低于20%时,相关系数才会高于0.5。综上所述,这些发现表明,特定于图谱的分区大小变化可以影响,但不能完全解释节点强度和度的统计和地形特性。

讨论

      我们描述了扩散MRI的几个关键处理步骤对人类连接组最强连接区域的分布和位置的影响。总共,我们检查了1,760个群组连接组(用于构建个体连接组的40个流程,以及44个群组重建方案),它们代表了扩散MRI处理中的常见选择和技术。然而,这一分析仍然只包括了扩散处理流程中可能出现的灵活性和可变性的一小部分。

      我们发现,在所有调查的流程中,只有一小部分流程变化表现出集中在枢纽的连接证据(即与指数情况不同的度分布特性)。当依赖节点强度来定义枢纽时,纤维追踪算法和分区的变化比群组重建方法和连接密度的变化具有更大的影响。使用二值度会导致网络枢纽中连接集中度的降低,并且生成的连接组对连接密度更敏感。当考虑枢纽的空间拓扑时,概率纤维追踪和确定性纤维追踪之间的选择导致了最大的差异,在某些情况下,导致了反相关的加权度序列。最后,虽然枢纽通常是具有最大表面积的区域,特别是在加权连接组中,但消除这种度对区域大小的依赖性通常会保留类似的枢纽拓扑。总之,这些发现引起了对文献中枢纽识别一致性的担忧,并表明在使用扩散MRI绘制连接组时,必须仔细考虑处理选择。

纤维追踪算法的影响

      度分布特性和枢纽强度根据使用的纤维追踪参数显示出显著差异。在我们分析中比较的特性中,概率纤维追踪和确定性纤维追踪之间的选择导致了度分布特性的最大变化,表现在度分布的偏度、峰度和右偏度上。一般来说,确定性纤维追踪导致更不对称的分布,具有更重的尾部;特别是,加权连接组中最偏斜的分布来自白质播种、解剖流线约束和确定性纤维追踪(ACT/WM/FACT)的组合。鉴于这些结果没有在其他工作流中一致重复,这种参数组合的结果可能是非典型的。这种非典型性是反映了这种工作流组合在恢复真实底层网络架构方面的独特敏感性,还是处理步骤之间相互作用的结果,目前尚不清楚。

     度分布形状的变化也反映在最强节点的位置变化和与节点表面积的关系上。在加权连接组中,概率纤维追踪显示出节点强度和节点表面积之间的强相关性。这在所有分区、播种策略、空间约束和群组重建中都观察到了。因此,源自概率纤维追踪的枢纽位置稍微更一致,并且工作流之间的度分布通常更相关。

皮层分区的影响

       文献中使用了许多不同的分区来绘制连接组。这些分区在与连接组映射相关的两个关键因素方面有所不同:它们的空间分辨率和分区大小的差异。空间分辨率自然会影响区域连接性分辨的精度,并可能导致枢纽空间拓扑的差异。例如,内侧PFC在DK68图谱中是一个突出的枢纽,但在其他分区中则不是,在其他分区中,该区域被细分为更小的区域。这种变化可能与表面积的区域变化有关,因为内侧PFC是DK68分区中最大的区域之一。这种变化可以与其他处理选择相互作用;例如,当使用HCP360分区的概率纤维追踪(而不是确定性纤维追踪)时,度分布高度偏斜和峰度(次指数衰减),其中最大分区比S200分区中最大分区大1.5倍以上。

表面积区域变化的影响

      如果给定的分区定义了大脑的有效功能区域,那么区域大小和度之间的相关性可能准确反映了生物学现实——一些区域可能仅仅因为其大小而更具连通性。然而,确定一个区域的枢纽状态是否仅仅是其表面积的结果可能是有用的。在控制了大小变化的影响后,不同区域的相对度排名只发生了适度的变化,这在某种程度上是令人放心的,但在得出关于特定脑区枢纽状态的结论时,仍应考虑这些影响。未来的工作可以考虑单个边的权重(与节点表面积无关)如何贡献于总节点强度(通常与节点表面积高度相关)的机制。

群组重建和连接密度的影响

       将个体连接组聚合为群组平均表示的具体方法对节点强度分布或拓扑结构的影响很小。二值度更容易受到连接组密度变化的影响,这可能是因为阈值处理会去除最弱的连接。这些连接对加权度的贡献很小,但在估计二值度时,它们对强边的贡献是相等的。

局限性

      我们有意使用无模型量来表征网络度分布,以简化和标准化各种考虑的流程的度量。另一种方法是将特定分布拟合到数据。例如,先前的研究报告称,加权连接组具有遵循幂律分布(Varshney et al.,2011)、截断幂律分布(Modha & Singh,2010)或广义帕累托分布(Zucca et al.,2019)的度分布。在最好的情况下,这些模型可以提示可能产生观察到的枢纽连接模式的生物学机制,但在使用这种分析进行推断时应该谨慎(Clauset et al.,2009)。我们的方法提供了一种无假设的方式来量化连接集中在假定枢纽节点的程度,但未来的工作可以考虑更详细地表征连接组度分布的精确形式。

      为了简单起见,我们在这里专注于皮层,考虑到我们检查了大量的处理流程。然而,我们的结论足够普遍,包含非皮层区域不应显著改变结论。同样,我们关注的是规范队列,因为应用于某些临床队列可能需要进一步的步骤,从而加剧工作流变异性(Martínez-Heras et al., 2015; Mochizuki et al., 2023; Richards et al., 2021; Sanvito et al., 2020; Shu et al., 2011)。未来的工作可以检查此类额外变化的影响(Gonzalez-Aquines et al., 2019; Horbruegger et al., 2019; Lipp et al., 2020)。

     扩散MRI缺乏基准真值,使得管道之间的比较具有挑战性。扩散MRI结果已经与动物的示踪(Calabrese et al., 2015; Girard et al., 2020)和模拟(Farrher et al., 2012; Maier-Hein et al., 2017)进行了比较,但该领域尚未收敛到一个金标准流程。

       最后,我们的分析集中在群组连接组上,因为这是文献中最常研究的。最近对功能MRI数据的分析表明,网络架构存在相当大的个体差异,这在行为上是有意义的(Kong et al., 2019; Levakov et al., 2021; Sun et al., 2022)。开发更好的方法来捕捉具有生物学意义的个体差异,而不同于测量噪声,仍然是该领域的一个重要挑战。

结论

       我们的发现表明,不同的处理选择会影响对网络枢纽的推断,并且在少数流程变化中出现了连接集中在枢纽的证据。因此,我们的分析表明,至少在不同的纤维追踪算法和分区中,以一致的方式识别网络枢纽是相当困难的。然而,并非所有的流程选择都是平等的。虽然目前不存在金标准流程,但某些选择比其他选择更受欢迎。一些去噪程序,如使用带有异常值替换的eddy校正和切片内运动校正,显示出优异的去噪性能,因此建议使用(Oldham et al., 2020)。ACT(Smith et al., 2012)代表了一种原则性的、合理的纤维追踪约束,可用于去除生物学上不合理的流线。此外,某些分区产生的分区在功能上比其他分区更均匀,支持其生物学有效性。在这方面,Schaefer分区在各种基准测试方面通常表现得相当好(Bryce et al., 2021; Schaefer et al., 2018)。然而,应该选择确定性纤维追踪还是概率纤维追踪是一个难以明确回答的问题。确定性纤维追踪更保守,但可能会错过对映射枢纽连接很重要的真实远程连接(Arnatkevičiūtė et al., 2021; Fulcher & Fornito, 2016; van den Heuvel et al., 2012)。概率纤维追踪能够更好地解析这些连接,但可能容易产生假阳性。与不同播种策略相关的选择可能需要更详细的调查。稀疏约束和过滤技术的纳入和改进(Schiavi et al., 2020; Smith et al., 2015b)对于提高这些方法的准确性很重要。针对合理的模拟对象的持续评估可能有助于裁决这些替代方案(例如,Maier-Hein et al., 2017)。在此之前,研究人员应该通过使用多个流程分析dMRI数据来评估结果的稳健性,并应该意识到他们在处理数据时所做的选择对最终结果的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值