Nature Neuroscience:将脑干与皮层功能架构相融合

脑干是中枢神经系统的基础组成部分,但在人脑成像研究中通常被排除在外,从而阻碍了我们对脑干如何影响皮层功能的完整理解。在本研究中,我们利用高分辨率7特斯拉功能性磁共振成像技术构建了一个包含大脑皮层和脑干58个核团(涉及中脑、脑桥和延髓)的功能连接组。我们发现脑干中存在一组紧凑的整合性枢纽,与大脑皮层建立了广泛的连接关系。脑干与皮层之间的连接格局表现为神经生理振荡节律、认知功能专门化模式以及单模态–跨模态的功能层级结构。这种皮层功能拓扑与脑干核团之间的持续对应关系受多种神经递质受体与转运蛋白在空间分布上的影响。我们在同一批受试者的3特斯拉数据中重复了所有的研究发现。总体而言,本研究表明,大脑皮层活动的多种组织特征都可以追溯至脑干的作用。本文发表在Nature Neuroscience杂志。

正文:

      大脑是由功能交互的神经群体构成的网络。在清醒人类个体中,利用多种成像技术有望研究大脑的功能架构,然而这些技术常偏重于信号质量最高的皮层区域。因此,许多关于大脑功能活动的关键发现——如功能专门化脑区的存在、具有同步神经活动的脑区网络,以及更高阶认知过程的机制——主要仍限于大脑皮层。由此引出了一个重要问题:皮层外结构在皮层功能中发挥着怎样的作用?

     或许现代大脑网络重建中最缺失的要素之一便是脑干。作为早期进化形成的结构,脑干对于生存与意识至关重要,并整合来自整个神经系统的信号。此外,多种神经递质系统起源于脑干核团并投射至整个大脑皮层,从而塑造皮层的功能活动。与对皮层功能的深入研究形成鲜明对比,对脑干功能的认识主要依靠病变研究或模式生物研究,而这类研究往往局限于特定核团或通路。近期令人振奋的成像进展显著改善了对整个脑干进行在体功能成像的可行性,包括使用超高场MRI扫描仪以及针对脑干的特定生理噪声消除流程。此外,近年来发展的脑干核团图谱包含多个核团,使得在皮层功能连接组(functional connectome)中纳入全脑干的解剖学精确表征成为可能15。

       在本研究中,我们利用高分辨率7特斯拉静息态功能MRI数据,结合涵盖中脑、脑桥和延髓共58个核团的全脑干图谱,探讨脑干功能架构与皮层功能之间的对应关系。首先,我们鉴定出脑干–皮层连接中的功能枢纽,并发现脑干–皮层功能连接反映出神经振荡的电生理标志。随后,我们根据脑干核团与皮层之间的连接模式进行聚类,并识别出一系列脑干核团社区,这些社区与皮层中熟悉的功能激活模式相对应,包括记忆、社会认知、运动、感觉与情绪等领域。借助18种神经递质受体及转运蛋白的正电子发射断层扫描(PET)脑图谱数据,我们进一步发现在脑干–皮层FC中存在特定的化学结构学特征(chemoarchitectonic signatures)。最后,我们展示了区分单模态(低阶)与跨模态(高阶)脑区的皮层功能层级(hierarchy)同样体现出脑干连接模式的影响。总的来说,通过对脑干与皮层功能活动进行在体同时成像,本研究将人们对皮层功能(包括其动力学特征、认知功能和单模态–跨模态功能梯度)的理解扩展到脑干层面,证明了皮层功能架构在多个层面上持续反映出来自脑干的影响。

研究结果

       本研究在20名无血缘关系的健康成年受试者(平均年龄29.5 ± 1.1岁,其中10名男性和10名女性)中使用7特斯拉扫描仪采集了静息态功能MRI(fMRI)时间序列数据,涵盖大脑皮层与脑干;同时在同一批受试者中使用3特斯拉扫描仪获得了重复数据。脑干数据的处理遵循既定的脑干特异性流程,所有的功能连接均基于预先定义的皮层与脑干种子区及目标区(有关细节见方法部分)。皮层分区采用Schaefer脑图谱中的400个脑区,而脑干核团则依据Brainstem Navigator图谱中涵盖58个核团的定义(包括50个双侧核团与8个正中核团;图1a,b;图谱下载地址:https://www.nitrc.org/projects/brainstemnavig)。为验证脑干图谱的有效性,我们以PET成像获得的神经递质受体密度图对脑干区域进行了分区,并证实受体在相应脑干核团中具有高密度分布。例如,在中缝核团区域内可见高密度的5-羟色胺(5-HT)受体(5HT1A、5HT1B、5HT2A、5HT4与5HT6)及转运体(5-HTT),在黑质与腹侧被盖区中可见多巴胺受体(D2)与转运体(DAT)的高密度分布,而在蓝斑核则有去甲肾上腺素转运体(NET)的高密度分布(补充图1)。接着,我们确认了尽管脑干的时间信噪比(temporal signal-to-noise ratio,tSNR)相对较低,但其范围仍在皮层tSNR范围内(补充图2a)。此外,我们证实较小的脑干核团并未与更低的tSNR显著相关(r = -0.45, P = 0.0004;补充图2b,c)。

图片

图1:脑干–皮层功能连接(FC)
     a, Brainstem Navigator图谱中58个脑干核团概率模板(阈值35%)的冠状位(后视图)、矢状位和轴位图示(https://www.nitrc.org/projects/brainstemnavig/ (ref. 15))。
     b, 皮层(灰色点,n=400)与脑干(绿色点,n=58)分区质心坐标的冠状位(后视图)、矢状位和轴位示意。
    c, 左侧为全脑(458个区域×458个区域)的FC矩阵;右侧为皮层(400个区域)与脑干(58个核团)之间的FC矩阵。    

    d, 表示脑干内部(绿色)、脑干与皮层之间(蓝色)、以及皮层内部(粉色)FC密度分布的直方图。
    e, 显示区域间FC随分区质心间欧式距离变化的散点图。皮层内部Spearman双侧检验r = -0.29, P ≈ 0;脑干–皮层之间r = 0.05, P = 8.7 × 10^-16;脑干内部r = -0.11, P = 3.4 × 10^-6。

     在图1c中显示了脑干与皮层的FC(时间序列之间的皮尔森相关)。皮层内的FC呈现出熟悉的网络组织模式,并与人类连接组计划(Human Connectome Project, HCP)的FC数据显著相关(Spearman’s r = 0.58, P ≈ 0 (ref. 17))。有趣的是,我们发现脑干与皮层之间的功能连接强度要高于脑干内部之间的连接强度(图1d;Welch双侧t检验t = 33.9, P < 0.001)。事实上,与皮层内部的FC会随欧式距离增加而减弱相比,脑干内部的FC不太受距离影响(皮层内部r = -0.29,脑干内部r = -0.11;图1e)。这一现象与脑干内主要白质束(如内侧丘系、脊髓丘脑束与皮质脊髓束)将信号投射至脑干外部结构(包括皮层、皮层下结构与脊髓)的解剖事实相符,这可能导致脑干内部的FC相对较弱,而脑干与皮层之间的FC更强。

脑干–皮层功能连接
      图1中脑干–皮层FC所呈现出的水平与垂直带状模式表明脑干–皮层之间存在一种主导性的连接格局。此后,我们将脑干核团与皮层的连接模式简称为“脑干到皮层”(brainstem-to-cortex)连接,而将皮层到脑干的连接称为“皮层到脑干”(cortex-to-brainstem)连接,尽管这里并无方向性因果推断的含义。脑干核团在皮层中的连接模式可通过其在皮层各分区上的FC总和(加权度数,weighted degree)进行量化(图2a)这些具有高脑干到皮层连接度的脑干核团——即脑干–皮层连接枢纽(hubs)——在空间分布上有着特定分布特征,与理论中枢纽位置可在距离与高效信息传输之间实现优化平衡的观点一致。

图片

图2:脑干–皮层功能连接(FC)的主导模式
     a, 脑干到皮层(brainstem-to-cortex)加权度(weighted degree)是通过将某个脑干核团与所有皮层区域的FC求和得到。图中以冠状位(后视)、矢状位和轴位显示脑干核团,节点大小与颜色反映加权度大小,边缘显示脑干内部强度排名前5%的功能连接(见补充图22了解前2.5%与前10%强连接的情形)。部分关键的脑干核团已标注。
     b, 皮层到脑干(cortex-to-brainstem)加权度通过将皮层某一区域与所有脑干核团的FC相加获得。颜色条范围为数据的第2.5百分位数到第97.5百分位数。   

  c, 按照Mesulam分层差异类(laminar differentiation classes)对皮层区域的皮层到脑干加权度进行分箱统计(各组间有显著差异;单因素方差分析(ANOVA)F = 18.5, P = 2.8×10^-11)26,94。分组为:旁边缘皮层(paralimbic,n=61)、异模态(heteromodal,n=136)、单模态(unimodal,n=120)以及特型(idiotypic,n=3)。
     d, 按照von Economo的细胞构筑(cytoarchitecture)分类对皮层区域的皮层到脑干加权度进行分箱统计(各组间有显著差异;单因素ANOVA F = 35.6, P = 2.0×10^-34)95,96。分组为:岛叶(insula,n=16)、边缘(limbic,n=39)、关联网络1(association network 1,n=155)、关联网络2(association network 2,n=77)、初级/次级感觉区(primary/secondary sensory,n=64)、初级运动区(primary motor,n=26)以及初级感觉区(primary sensory,n=23)。c和d中的小提琴图显示了各分箱数据的核密度估计,绿色点表示中位数,纵线表示四分位距。
     e, 散点图显示皮层到脑干加权度与经脑磁图(MEG)测得的七种动态特征之间的相关性,包括六个典型频带的功率谱分布以及内在时间尺度(intrinsic timescale,代表神经元群体的时间记忆特征;方法中有详细描述)。每个点代表一个脑区(n=400)。下方脑表面图为HCP数据中各项MEG指标的皮层分布。

     位于中脑的脑干–皮层中枢核团包括中脑网状结构(mesencephalic reticular formation)、导水管周围灰质(periaqueductal gray)和背侧中缝核(dorsal raphe);脑桥中的枢纽包括桥网状核(pontine reticular nuclei)、背外侧被盖核(laterodorsal tegmental nucleus)以及前庭核(vestibular nuclei,分布于脑桥与延髓);而在延髓内的脑干枢纽则包括下橄榄核(inferior olivary nucleus)和下延髓网状结构(inferior medullary reticular formation)。我们确认加权度模式与tSNR无相关性(Spearman’s r = 0.20, P = 0.14)。在皮层区域中同样呈现了加权度模式(图2b),这反映了皮层区域与脑干连接的强度(即皮层到脑干枢纽),并沿着前–后方向梯度分布,其中前扣带皮层是皮层到脑干FC的主要枢纽。将皮层区域的加权度根据Mesulam的分层差异分类以及von Economo的细胞构筑分类进行统计分析,我们发现边缘与岛叶类区域显示出最高的脑干FC,而单模态类表现出最低的脑干FC(图2c,d;Mesulam分类:单因素ANOVA F=18.5, P=2×10^-11;von Economo分类:单因素ANOVA F=35.6, P=2.0×10^-34)。值得注意的是,在边缘与岛叶类脑区中,前岛叶与前扣带皮层展现出最高的皮层到脑干FC(补充图3)。

      这种沿前后方向的脑干–皮层FC梯度可被理解为脑干对皮层神经群体影响的分布梯度。因此,我们进一步检验了该梯度是否与皮层动态特征的直接测量(即电生理学意义上的神经振荡节律)相一致。具体而言,我们将从HCP数据中获得的经脑磁图(MEG)频谱功率分布(涵盖六个典型频带)及内在时间尺度(可解释为神经元群体的时间记忆)与皮层到脑干加权度相关联。结果表明,皮层到脑干加权度与七项神经振荡动力学特征(尤其是α频段功率)均有较强相关(r > 0.5),其中α功率在保持空间自相关的置换检验(Pspin)及多重比较校正后仍显著(r = -0.71,Pspin = 0.016;图2e)。这表明皮层动力学特征与脑干输入在多个时间尺度上保持一致。

脑干连接反映认知本体论(cognitive ontologies)
     无论是皮层区域还是脑干核团,与脑干的连接模式都在一定程度上遵循上述脑干加权度主导模式(图3a左;皮层区域中值r=0.97,r∈[0.90,1];脑干核团r∈[0.71,0.94];见补充图4获取各区域的相关系数)。为了理解脑干核团在与皮层连接方面的独特性,我们需要关注这一主导模式之外的连接特征。因此,我们从每个区域的脑干连接特征中回归掉该主导的加权度模式(图3a),从而得到一个反映脑干与皮层间超越主导连接模式的FC矩阵(图3a中间)。通过对回归后的皮层连接模式进行两两相关分析,我们构建了一个脑干区×区的相关矩阵,表示任意两个脑干核团在其与皮层的功能连接模式上有多大的相似度(图3a右)。

图片

图3:皮层功能背后的脑干社区结构    

     将Louvain社群检测算法应用于脑干核团的功能连接(FC)数据中,以确定是否可以将脑干核团组织成若干功能社区(communities),每个社区与皮层呈现特定的连接模式。

      a, 左图:对全部458个节点(400个皮层分区和58个脑干核团),将各节点的脑干FC模式与加权度模式(图中插图及图2a所示)进行Spearman相关分析。图中同时展示了脑干(绿色)与皮层(粉色)节点的相关系数密度分布,以及两者合并(蓝色)的分布(中位r=0.97)。

      中图:从每个皮层区域的脑干FC模式中回归掉该主导加权度(脑干到皮层FC加权度)的影响,得到皮层(400个分区)×脑干(58个核团)的FC残差矩阵。

      右图:显示脑干核团两两之间在超越该主导连接模式基础上的相似性(Spearman’s r)。超越了脑干与皮层之间的主导连接模式。脑干核团按照社区归属排序(社区颜色显示在右侧),并在热图中勾勒出各个社区。右侧的括号表示在较粗粒度的社区检测解中这些社区如何合并。

     b, Louvain社群检测算法的社区分配结果。图中以冠状位(后视)、矢状位和轴位展示脑干核团,每个节点大小与图2a中显示的加权度相同。详见表1了解各脑干核团的社区归属。

   c, 皮层加权度模式通过将一个皮层区域与特定社区内所有脑干核团的功能连接(FC)求和计算得出,并展示了所有五个社区的结果。这些图谱展示了每个脑干社区与皮层之间的功能连接方式。

    d, 将c中每个脑干社区的皮层加权度模式与Neurosynth数据库22中123个认知与行为元分析激活图进行相关分析。仅显示相关度前10%的激活图模式。所有Neurosynth术语的相关系数详见补充图8。

     将该相似性矩阵在多种解析度参数(0.1 < γ < 6.0)下输入Louvain社群检测算法,我们发现脑干可分解为层级嵌套的多个社区。在主文中我们展示了当γ=2.8时得到的5个近似等大社区的稳定解(图3b),在补充材料中还提供了3社区(γ=1.9)和4社区(γ=2.2)的较粗粒度划分解(补充图5和6)。表1列出了各社区中的核团组成,后文将对每个社区进行详细描述。

表1 脑干社区

图片

     这些脑干社区如何与皮层连接?对于每个脑干社区,我们计算了每个皮层区域与该社区内所有脑干核团的总FC(加权度,即将该社区所有脑干核团与该皮层区域的FC相加),如图3c所示(有关脑干核团间FC方差可见补充图7b)。皮层加权度可被视为与相应脑干社区相关联的皮层网络图样。接下来,为确定每个皮层网络的功能专门化,我们将图3c中各社区对应的皮层加权度模式与Neurosynth数据库中123项元分析功能激活图进行相关分析(具体操作见方法部分22)。图3d展示了与各皮层网络最相关(前10%)的Neurosynth关键词,补充图8则列出了所有123项相关系数。

     我们发现其中一个社区(黄色)由广泛分布于脑干的核团组成,包括下丘核、前庭核和下橄榄核。该社区与单模态皮层连接最为紧密,并与感觉感知及运动功能相关。另一感知相关社区(灰色)位于延髓,包括上橄榄复合体、内脏感觉运动复合体以及大缝核(raphe magnus)。该社区与初级运动及感觉皮层的腹侧区域以及前顶叶区(如角回和缘上回)连接最强,这些区域与高阶运动协调及言语功能相关。需要注意的是,在三个社区的划分解中(补充图5),黄色与灰色社区合并为一体。

     我们还发现一个由中脑核团组成的社区(粉色),包括腹侧被盖区、背侧与尾-头方向线性中缝核(dorsal and caudal–rostral linear raphe nuclei)及中脑网状结构。该社区与扣带皮层的功能连接最为密切,与情绪调控、情感、成瘾及觉醒相关。该社区在皮层加权度模式上也与主导加权度模式最为相似(补充图9a,b)。

     最后,我们发现两个与高阶认知功能相关的脑干社区。第一个(绿色)包括中脑核团,如黑质、红核、上丘核和导水管周围灰质。该社区与内侧跨模态皮层区域(如楔前叶和额极)连接最强。第二个高阶认知社区(蓝色)由位于中脑和脑桥的核团组成,包括蓝斑核、菱脑背外侧被盖核/中央灰质区(laterodorsal tegmental nucleus/central gray of the rhomboencephalon)以及桥网状核。这两个社区均与跨模态皮层区和记忆功能相关,但又各有所长:绿色社区与额极联系紧密,与自传体记忆和社会认知有关;蓝色社区则更广泛地连接于内侧和外侧跨模态皮层,与记忆提取、工作记忆和认知控制相关。值得注意的是,在三个和四个社区的划分解中,绿色社区始终保持独立,而蓝色和粉色社区则合并在一起(补充图5与6)。我们在3特斯拉数据中也观察到相同的三个社区划分解(补充图10)。总体而言,这些发现表明了脑干功能与认知功能的惊人对应关系。

       为探究哪些脑干核团在功能上更具灵活性,我们计算了每个脑干核团的回归后FC与皮层之间的相关性(即在去除主导加权度模式后与皮层的FC分布),并将其与该核团所属社区的皮层加权度模式进行Spearman相关(补充图7c)。相关度最低(即其皮层连接模式最不受所属社区典型连接模式代表)的核团包括中缝正中核(median raphe nucleus)、上丘核、脚旁被盖核(pedunculotegmental nuclei)、微细胞被盖核-旁大盖核复合体(microcellular tegmental nucleus-parabigeminal nuclei)、下蓝斑核(subcoeruleus)以及黑质和红核的子区。这些核团(除中缝正中核为正中核团外)均为双侧结构,两侧同源核团被分配至不同的社区。这表明这些核团同时参与单模态(感觉-运动)与跨模态(认知)功能。

脑化学结构对脑干社区的映射
      考虑到皮层从多个神经调制性脑干核团接受输入,我们试图明确神经递质系统、已识别的脑干社区以及这些社区皮层投射模式之间的关系。我们利用一项最新PET图谱的数据,该图谱涵盖人脑内九大神经递质系统,对18种神经递质受体与转运体在皮层的分布进行了估计。具体来说,对于每个脑干社区,我们建立多元线性回归模型,以神经递质受体与转运体密度预测该社区在皮层的加权度分布(图4左)。随后,我们采用支配性分析(dominance analysis)来评估每种受体与转运体对模型整体拟合度

图片

的相对贡献度(图4右)。

图片

图4:脑化学结构映射至脑干社区
      对于每个脑干社区(左侧脑干示意图及图3b所示),我们利用18种皮层神经递质受体与转运体密度分布,对该社区在皮层的加权度模式(同时以脑表面图及图3c形式展示)建立多元线性回归模型。柱状图显示了模型拟合度(调整后的R²)。随后,对自变量(受体与转运体)进行支配度分析(dominance analysis)以确定哪些受体或转运体对模型的拟合度贡献最大。热图显示了各变量的百分比贡献。受体/转运体数据来自一部人脑中神经递质受体/转运体密度的PET图谱。

      研究发现,去甲肾上腺素转运体(NET)在所有社区中均展现出重要作用,且在蓝色“记忆”相关社区中达到峰值,该社区包含去甲肾上腺素合成的主要核团——蓝斑核(locus coeruleus)。另一高阶认知相关的脑干社区(绿色)与皮层的连接模式与单胺类转运体的分布相吻合,包括多巴胺转运体(DAT)和5-羟色胺转运体(5-HTT)。该社区中包含多巴胺能黑质(substantia nigra)以及5-羟色胺能中缝正中核和副正中核。此外,NET、DAT和5-HTT在交互支配度(interactional dominance)上也表现突出。交互支配度定义为当将某个自变量加入包含其它所有自变量的子模型时,模型R²的变化量(补充图11)。这表明这些转运体与其它变量共享的方差较少,也即在利用其它神经递质系统预测皮层加权度模式时,它们能够持续提供互补信息。

     我们还发现,整体拟合度

图片

在与感觉相关的(黄色)和与情绪相关的(粉色)脑干社区中最高。换言之,这些脑干核团与皮层的功能连接模式与皮层受体分布的对齐程度较其它社区更高(图4)。在这两个社区中,占主导地位的受体包括组胺受体H3(histamine receptor H3)、阿片受体MOR(mu-opioid receptor)、NET以及多巴胺受体D2,对于粉色社区,还包括5-HTT和乙酰胆碱转运体VAChT(vesicular acetylcholine transporter)。这些受体隶属于多种神经递质系统,主要为代谢型(metabotropic)而非离子型(ionotropic)。同时,它们(特别是MOR、H3和5-HT1A)也是最能预测皮层加权度模式的受体(补充图9c)。总体而言,这些发现强调了多种递质系统在调控脑干–皮层功能连接中的重要作用。

脑干核团勾勒出单模态与跨模态皮层
      最后,我们问道:如果脑干核团表现出与皮层独特的FC模式,那么皮层区域是否也表现出与脑干独特的FC模式?利用上述回归后的功能连接组,我们对任意两皮层区域的回归后脑干连接特征进行相关,从而构建了一个皮层区×区的相关矩阵,表示任意两皮层区域在与脑干的功能连接模式上有多相似(图5a)。

图片

图5:脑干核团勾勒出单模态与跨模态皮层区域     

     a, 左图为FC残差矩阵(与图3a左侧的矩阵相同)。右图为皮层区×区相关矩阵,展示在去除脑干–皮层主导连接模式后,两皮层区域在脑干连接上的相似度(Spearman’s r)。
     b, 将扩散映射(diffusion map)嵌入方法应用于a中所示的矩阵,可得到皮层–脑干FC的第一梯度(左)。右侧为皮层–脑干连接第一梯度与皮层–皮层FC第一梯度之间的相关性(r = 0.77, Pspin = 0.0001)。皮层–皮层FC第一梯度也称为皮层功能层级(cortical functional hierarchy)、单模态–跨模态轴(unimodal–transmodal axis)或感觉–联结轴(sensory–association axis)。下方显示了两个梯度值的分布情况。

   c, 将得分为负值(左)或正值(右)的皮层区域与脑干核团的FC求和,得到该脑干核团对这类皮层区域的加权度分布。图中以冠状位(后视)、矢状位和轴位视角展示脑干核团。节点大小与图2a中显示的加权度相对应。

     利用扩散映射嵌入对皮层区域与脑干连接的相似性进行分析,我们得到第一梯度,用来表示皮层区域在脑干连接模式上的连续变异。沿该梯度得分相似的皮层区域与脑干连接模式相似;梯度分值差异越大,皮层区域在脑干连接特征上越不同。值得注意的是,这一皮层–脑干连接梯度与皮层–皮层连接的主导功能梯度高度相关(r = 0.77, Pspin = 0.0001;图5b)。该皮层–皮层功能梯度已被认为反映了从单模态(如低阶功能相关的初级区域)到跨模态(如涉及高阶联结功能的关联区域)的层级连续性。我们发现这种单模态–跨模态层级同样反映在脑干的FC模式中。有趣的是,相较于经典的皮层–皮层功能梯度,通过脑干连接导出的梯度将大部分皮层区域分布在梯度的两个极端;在Louvain社区划分中,一个稳定的结果是将皮层划分为一个跨模态社区与一个单模态社区(补充图12)。

     那么,哪些脑干核团更倾向于与单模态(梯度为负值)或跨模态(梯度为正值)的皮层区域建立更强的功能连接?我们针对两类皮层区域分别计算脑干核团的加权度(图5c)。结果发现,单模态皮层区域(负值梯度)与位于延髓尾端的脑干核团连接最紧密,包括下延髓网状结构、内脏感觉运动核复合体以及苍白缝核和暗缝核。此外,中脑的下丘核(inferior colliculus)与单模态皮层的连接也最为显著。而与跨模态区域(正值梯度)连接最紧密的脑干核团主要分布于中脑与脑桥,包括腹侧被盖区(ventral tegmental area)、蓝斑核(locus coeruleus)、黑质(substantia nigra)、背侧中缝核(dorsal raphe)以及内侧臂旁核(medial parabrachial nucleus)。

在皮层下结构中的验证
     最后,我们将分析扩展至其他皮层下与间脑结构——这些位于皮层与脑干之间的结构可能中介两者之间的关系——以初步理解此类发现如何在皮层下结构中得到体现(补充图13a)。具体而言,我们在14个由FreeSurfer分割定义的双侧非新皮层结构(尾状核、壳核、苍白球、伏隔核、丘脑、杏仁核、海马),以及来自Brainstem Navigator图谱的8个双侧间脑核团(外侧膝状体核(LGN)、内侧膝状体核(MGN)以及丘脑底核1与2号亚区)与下丘脑的7特斯拉功能数据中,同样进行了分析。为简化表述,我们将FreeSurfer定义的结构统称为“皮层下”结构(尽管海马严格来说是内侧皮层(allocortex),丘脑为间脑结构),而将Brainstem Navigator定义的间脑核团及下丘脑统称为“间脑”(diencephalon)。需要注意的是,FreeSurfer分割的这些区域较大,以细胞构筑学为定义依据,且数据处理未采用脑干特异性流程;而间脑核团体积较小,需使用脑干特异性预处理流程,以减轻血管与脑脊液(CSF)信号的干扰。

      首先,我们展示每个皮层下与间脑区域与脑干的功能连接强度(加权度)(补充图13b)。加权度最高的区域包括丘脑、下丘脑与外侧膝状体核。接下来,我们重建了非新皮层结构之间的相关矩阵,用以表示它们在去除主导加权度模式后,与新皮层连接特征的相似度(补充图13c)。使用Louvain社群检测,我们得到一个包含四个社区的稳定解,与图3中描述的社区相似,同时还为皮层下与间脑结构提供了社区分配结果(补充表1列出了各社区内的脑区)。例如,杏仁核、海马、丘脑底核与内侧膝状体核与中缝正中核、下丘核及上橄榄复合体(灰色社区)归于一类,这些非新皮层结构与初级感觉-运动皮层区紧密连接。伏隔核与下丘脑则与导水管周围灰质、楔形与上丘核(绿色社区)归于一类,这些区域与腹内侧前额叶皮层紧密连接。尾状核与丘脑则与主要的神经调制核团(包括背侧中缝核、黑质和蓝斑核)(蓝色社区)分为一组,这些区域与跨模态皮层(包括楔前叶、前扣带皮层、角回与背外侧前额叶皮层)紧密相连。最后,壳核和苍白球与内脏-感觉-运动复合体、前庭核及下橄榄核(黄色社区)归为一类,这些区域与腹侧初级和次级运动皮层的功能连接最为紧密。

     最后,我们对这一非新皮层结构与新皮层连接相似性矩阵再次应用扩散映射嵌入。结果显示,第一梯度仍与单模态–跨模态梯度相似(补充图13d),且海马、杏仁核与内侧膝状体核与负值(单模态)脑区的FC最为紧密,而尾状核、壳核、丘脑与外侧膝状体核则与正值(跨模态)脑区的FC更强。总体而言,当分析扩展到皮层下及间脑结构时,本研究的发现仍保持一致性。

讨论

      在本研究中,我们利用高分辨率7-Tesla fMRI数据和包含58个脑干核团的全脑干图谱,探讨了皮层功能如何反映脑干功能。我们鉴定出一组紧凑的整合型脑干枢纽,与皮层建立了强大的功能连接。我们发现,多种皮层现象,包括振荡节律、认知功能以及单模态–跨模态功能层级,都可以追溯至与脑干的特定功能连接模式。

      由于脑干是一组深部结构,成像挑战巨大,导致神经影像学领域长期以来难以对清醒人类脑干进行在体功能成像,结果在清醒人类脑干活动的知识方面存在空白。过去十年中,关于脑干fMRI信号源及噪声校正的广泛研究显著提高了深部脑结构中信号的获取与解释的可靠性。2015年,Bianciardi等人开始开发人类脑干核团的在体神经影像模板,促进了全脑干功能成像的标准化。随后,在2022年,Singh等人和Cauzzo等人分别报告了功能定义的觉醒与运动以及自主、边缘、疼痛和感觉脑干核团与全脑的静息态功能连接组。在本研究中,我们将这些连接组整合为一个涵盖全脑干与全皮层的功能连接数据集,以回答以下问题:人类在体成像中全脑干功能活动能为我们理解皮层功能提供什么信息?

     首先,我们定位了脑干中与皮层功能连接最紧密的区域。尽管关于皮层枢纽(hubs)的文献丰富,但关于脑干枢纽的了解却甚少。我们鉴定出一组分布于中脑、脑桥和延髓的整合型脑干枢纽。脑干到皮层的枢纽在功能上具有多样性,有些主要参与运动功能(例如下橄榄核(运动协调)、桥核(运动)和前庭核(平衡)),有些与特定的神经递质系统相关(例如背侧中缝核(5-羟色胺)和背外侧被盖核(乙酰胆碱)),还有些与多种功能相关(例如中脑网状结构和下延髓网状结构及导水管周围灰质)。令人意外的是,蓝斑核未被识别为枢纽,尽管其已知向整个皮层广泛投射,并在信息整合中扮演重要角色。

      同样地,我们的研究还展示了皮层区域相对于脑干功能连接强度存在一个前后方向梯度,其中前扣带皮层是皮层到脑干连接最强的枢纽区域。先前有研究报告,从弥散加权MRI得到的结构连接显示前部皮层与脑干之间有较强的连通性。此外,对人类von Economo神经元的转录组分析发现,这些细胞主体局限于前部皮层的第V层,它们的双极神经元表达与远距离投射至脑干相关的转录因子。换言之,这种皮层–脑干功能连接梯度可能反映了脑干与皮层间的突触连接基础。有趣的是,皮层到脑干的前后梯度与岛叶内部的前后梯度相似(补充图3)。岛叶虽然在图2d的细胞构筑分类中被归为一类,但实际上功能多样。我们发现,与脑干功能连接最为紧密的是腹侧前岛叶(与内脏运动控制相关)和背侧前岛叶(与注意相关),而与嗅觉、味觉和内感知觉等感觉功能相关的中、后岛叶与脑干功能连接则相对较弱。

     此外,我们还发现在皮层到脑干枢纽分布与MEG测得的α波功率之间存在密切对应关系。尽管对皮层振荡节律的研究非常深入,但由于电生理信号在传导过程中的衰减,皮层下和脑干节律较难直接测量。关于α节律的一种理论认为,α波代表来自丘脑对皮层的抑制性输入,即“丘脑关闭闸门”(不过可参考文献49了解关于α振荡功能的不同理论)。我们的发现与此一致:与脑干保持更高同步性的皮层区域往往表现出较低的α功率。同时,我们发现皮层到脑干加权度与低频(如δ和θ频段)的功率分布呈正相关,可能反映这些低频在认知中的作用。总体而言,我们的研究表明,脑干的连接信息可为皮层动力学的“语法”提供启示,未来研究可进一步验证皮层与脑干节律间的关系

      功能成像技术已用于阐明在特定任务和静息条件下协同激活的一系列皮层网络。近年来对中枢神经系统皮层外结构的探索表明,皮层网络也与特定的小脑区、脊髓节段以及特定脑干核团存在共激活关系。然而,与其将皮层定义的功能激活模式强加于脑干,我们更关注脑干核团间是否共享相似的皮层连接模式,以及这些与脑干核团相联的皮层网络具有怎样的特征。我们发现脑干可组织为层级嵌套的社区,不同社区中的核团与皮层存在相似的功能连接模式。这些社区为先前未知的脑干核团之间建立了功能联系,而这些联系或许只能在能同时记录脑干和皮层在体神经活动的人类研究中观测到。此外,每个脑干社区都与成熟的皮层功能网络相关,这些网络参与认知、记忆、感觉、运动及情绪等功能。一小部分双侧脑干核团被分配至同时具有单模态与跨模态特征的不同社区,可能意味着这些核团在功能上更为灵活(表1)。的确,这些核团与其所属社区的皮层加权度模式相关性较低(补充图7c)。总体来看,这些发现表明脑干在多种认知和行为功能中扮演着广泛而重要的角色。

      每个脑干社区都与多种心理功能相关,一个合理的解释是这源于其特定的化学结构特征。脑干包含多种神经调制系统,这些系统向整个皮层投射,从而调控大规模神经元群体的同步化及相应的功能。去甲肾上腺素能(NE)系统是向全脑投射的主要神经调制系统之一。我们发现NET(去甲肾上腺素转运体)与每个脑干社区相关的皮层激活模式密切对应,其中在包含去甲肾上腺素合成主要核团——蓝斑核——的蓝色记忆相关社区中这种对应关系尤为显著(图3)。此外,这一社区与记忆、认知控制和检索相关,这些都是被认为受NE系统调节的整合功能。NET在五个脑干社区中均占主导地位,这在初看来有些令人意外,因为蓝斑核并未被识别为枢纽。然而,先前研究推测,蓝斑核的整合作用仅在特定行为情境下出现。这表明蓝斑核以及脑干枢纽的功能可能随状态变化而时变。因此,NET 的主导地位可能表明其空间模式使得 NET 存在并可用于促进多种认知环境下的脑干-皮质同步性。事实上,无论大脑状态如何,NET 都存在,这与 NET 在突触中终止去甲肾上腺素作用的功能以及它是一个参与其他单胺再摄取的非特异性转运体的事实一致。此外,蓝斑的去甲肾上腺素能投射可能会根据认知环境特异性地靶向皮质区域和网络。蓝斑的状态依赖性可以在未来通过脑干优化 fMRI 实验在任务期间进行测试。第二个非排他性的解释是,NET 示踪剂 ([11C]MRB) 由于扫描持续时间长于 11C 的半衰期而导致信噪比降低。最终,需要做更多的工作来理清蓝斑、去甲肾上腺素和 NET 之间关于脑干-皮质 FC 的关系。

      最后,我们发现皮层区域与脑干的连接遵循一个已知且常被研究的皮层梯度:感觉–联结轴(sensory–association axis)。该梯度(即单模态–跨模态功能层级)描述了从低阶到高阶皮层功能的连续变化。先前研究认为,这一梯度与皮层在个体发育和种系演化过程中的扩张有关,在发育过程中变得更加极化,并在病理进程中表现出更少的极化。值得注意的是,感觉–联结轴通常是在考察皮层加工及皮层–皮层连接的背景下进行解释的。本研究发现,这一轴的两极在与脑干连接模式上呈现截然不同的特征。这或许意味着脑干输入为皮层层级的两个极点(即初级和关联皮层)提供锚定点,而皮层–皮层连接模式则在低阶到高阶功能的渐进转变中起到填补和渐变作用。换言之,皮层功能层级的出现可能源于与脑干的连接模式,这突显了皮层外结构对皮层–皮层连接所能产生的影响。脑干如何参与梯度在发育、健康老化及病理过程中的变化是未来研究一个令人期待的问题。

     迄今为止,我们主要将研究结果置于人类神经影像学文献的框架内。然而,脑干的连通性和功能长期以来在非人类模式生物中,如小鼠、大鼠、猫和猕猴,已被广泛研究。这些研究通常聚焦于特定的脑干核团或核团类别,并使用顺行和逆行病毒示踪剂在体外映射输出和输入神经元投射。轨迹示踪研究一致报告了前额叶皮层与脑干之间的密集投射,这与我们发现前部皮层是脑干连通性的枢纽一致。Porrino和Goldman-Rakic报道,大多数脑干向前额叶皮层的投射源自腹侧被盖区、黑质、背侧中缝核、蓝斑核和内侧臂旁核。这五个核团在我们的研究中都被识别为与跨模态皮层具有高FC的脑干核团(图5c)。事实上,尽管蓝斑核向整个皮层发出广泛投射,但在大鼠中,向前额叶区域的投射比向运动皮层的投射释放更多的去甲肾上腺素,这进一步支持蓝斑核与跨模态皮层功能相关的观点。关于5-羟色胺能中缝核,先前研究报告了中缝核的前后(rostral和caudal)投射模式的二分法,即前中缝核(如背侧中缝核和中缝正中核)倾向于向前投射至皮层,而后中缝核(如缝核pallidus和缝核obscurus)则倾向于向后投射至脊髓或脑干网状结构中的内脏和躯体运动核团。特别是,大多数向皮层内胚层神经元的5-羟色胺能中缝神经元来自背侧中缝核。我们在跨模态和单模态皮层的连接性上观察到了前后中缝核的这种二分法,并且我们还将背侧中缝核识别为脑干–皮层FC的枢纽。总体而言,非人类物种的体外解剖研究支持了本研究的人体在体fMRI发现。

     为什么脑干应该与前部皮层区域在解剖和功能上有更强的连通性?一个假设是,这种连通模式与大脑的稳态调节(allostasis)相关:大脑如何高效地维持身体的能量调节。与脑干连通性最强的皮层区域也是无颗粒(agranular)和半颗粒(dysgranular)区域,参与内脏运动控制(visceromotor control,控制内部身体的运动)和内感知觉(interoception,感知内部身体的感觉)——即腹侧前岛叶和前扣带皮层。内脏运动控制和内感知觉对于维持身体的能量消耗(稳态调节)至关重要:大脑通过内感知觉预判身体的代谢需求,通过内脏运动控制尝试满足这些需求,然后再次通过内感知觉调整需求是否得到满足。这些皮层区域也是许多功能过程的基础(即“领域通用”),包括情绪、记忆、奖励和认知控制。我们发现,参与内脏运动控制和内感知觉的脑干核团(导水管周围灰质、臂旁核和内脏-感觉-运动核复合体)同样具有领域通用性:这些核团并未在同一功能模块中聚集(图3),而是分布在与记忆、感觉-运动功能和情绪相关的五个识别社区中。此外,臂旁核倾向于与其所属社区的皮层投射模式较不一致,这再次提示其具有领域通用功能。这与骨骼运动(控制骨骼肌的运动)和外感(感知外部世界)脑区(例如“单模态”或初级感觉区域)形成对比,后者倾向于接受较少的脑干输入,并且通常是领域特定的。总体而言,我们推测脑干–皮层FC可能反映了脑干在稳态调节中的参与。

     尽管本研究的主要关注点是脑干–皮层的功能关系,但一类重要的结构可能在脑干–皮层连通性中扮演显著角色:皮层下结构。我们发现丘脑是脑干连通性的一个主要枢纽,这支持了大多数脑干向皮层的投射通过丘脑传递的观点。与丘脑聚类的脑干核团几乎全部为神经调制型(neuromodulatory)(补充表1),并且与跨模态皮层功能区功能连接,提示了高阶认知过程、丘脑与神经调制型脑干核团之间的联系。此外,我们发现与边缘前额叶区域和脑干核团(如导水管周围灰质)相关的腹内侧边缘区域与下丘脑的连接可能通过下丘脑中介。猕猴的解剖轨迹示踪研究表明,下丘脑与眶额叶及内侧边缘区域之间存在连接,这些连接可能参与对情绪刺激的自主反应。最后,我们发现与运动控制相关的脑干核团,如下橄榄核、前庭核和内脏-感觉-运动核复合体,与同样在运动控制中起重要作用的皮层下结构(例如壳核和苍白球)聚类。事实上,这些脑干核团与皮层下结构在功能上与腹侧及次级运动皮层最为紧密相连。总体而言,通过fMRI我们能够观察到特定脑干核团、皮层下结构与皮层区域之间的功能相关关系。

     在本研究中,我们将体内皮质功能网络的“环境”扩展到了脑干,并发现多种皮质现象都反映在脑干-皮质的功能连接(FC)中。这为脑干FC的未来应用打开了大门。例如,多种病理标志物,如帕金森病中的α-突触核蛋白,被认为起源于脑干功能障碍,然后扩散到整个皮质。脑干FC模式可能产生更精确的疾病传播和异常动力学模型,从而产生潜在可操作的脑干靶点。脑干FC还可能促进开发更好的持续动态计算模型。虽然目前的工作将体内人类皮质功能的研究扩展到脑干,但将脑干功能以及小脑、皮层下和脊髓的结构和功能整合到完整的人类中枢神经系统单一连接图中,这种可能性越来越大。

局限性

      最后,我们给出一些重要的方法论考虑。首先,由于脑干核团位置深、靠近血管和脑脊液、形状不规则且体积小,因此很难对其进行成像。这个脑干数据集经过了广泛且优化的生理噪声校正和定义核团的验证,但脑干成像仍然是一个活跃的研究领域,最佳实践仍在不断完善。例如,从个体空间到模板空间的扭曲可能会导致脑干核团边界的轻微重叠。此外,内侧颞叶和眶额叶区域存在一些信号丢失和较低的tSNR,脑干信号与第四脑室的信号表现出较低的残余相关性。其次,7特斯拉fMRI的时间分辨率被最小化为2.5秒。考虑到重建小型脑干核团所需的切片数量和空间分辨率,这是必要的。第三,本研究仅纳入了20名健康参与者。虽然我们使用同一参与者的3特斯拉扫描复制了研究结果,并进行了半样本重采样分析,但未来仍需在更大的数据集中验证我们的研究结果。第四,最佳的脑干配准可能会导致皮质配准欠佳,尽管我们发现皮质内的FC与来自独立数据集的FC相关。第五,本报告主要考虑组平均FC,尽管个体间的FC存在差异(补充图17和18)。随着脑干的采集和处理协议的建立,包含更多个体的数据集将使得测试个体脑干FC的变异性是否能预测个体认知差异成为可能。

总结

      在本研究中,我们绘制了脑干–皮层连通性的功能架构。我们发现,脑干的功能架构是皮层功能中一个始终存在的主题。本研究利用现代脑成像技术的进步,扩展了研究范围至以前难以接触的结构,促进对大脑更完整的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值