【FPGA教程案例100】深度学习1——基于CNN卷积神经网络的手写数字识别纯Verilog实现,使用mnist手写数字数据库

本教程详述了基于FPGA的CNN卷积神经网络设计,使用Verilog实现手写数字识别系统,结合MNIST数据库。内容包括CNN原理、Verilog实现的卷积层、激活层、全连接层和判决输出层,以及FPGA仿真过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### FPGA实现CNN进行MNIST手写数字识别 #### 设计架构概述 为了在FPGA实现卷积神经网络(CNN),用于MNIST手写数字识别,整个系统的设计需考虑硬件资源的有效利用以及算法性能优化。具体来说,设计应包括输入接口模块、卷积层处理单元、激活函数模块、池化层逻辑、全连接层计算单元及输出控制电路。 #### 输入接口模块 该模块负责接收来自外部存储器或其他数据源的MNIST图像像素值,并将其转换成适合内部处理的形式。考虑到MNIST图片尺寸固定为\(28 \times 28\)像素,灰度级表示,因此可以直接映射至特定宽度的数据总线上[^3]。 ```verilog // Verilog代码片段展示简单的并行加载机制 module input_loader ( input wire clk, output reg [7:0] pixel_data // 假设每个像素占用8位 ); always @(posedge clk) begin // 这里简化了实际读取过程 end endmodule ``` #### 卷积层处理单元 这是核心部分之一,在此阶段应用一系列预定义好的滤波器来检测局部模式。对于每一轮迭代,都需要遍历整张图象的不同位置执行加权求和操作再加上偏置项形成新的特征映射。由于涉及大量乘法累加(MAC)运算,建议采用流水线结构提高吞吐率[^4]。 ```verilog // 局部MAC单元示例 module mac_unit( input wire signed [7:0] a, b, output reg signed [15:0] result ); always @(*) begin result = a * b; end endmodule ``` #### 激活函数模块 经过卷积后的数值往往较大且可能负数,此时需要引入非线性的变换使得模型具备更强表达能力。常用的选择有ReLU(Rectified Linear Unit), 它能够有效缓解梯度消失问题同时易于硬件实现。 ```verilog // ReLU激活函数简单实现 function automatic integer relu(input integer x); if (x > 0) return x; else return 0; endfunction ``` #### 池化层逻辑 目的是进一步压缩空间分辨率而保留重要信息。最大池化(Max Pooling)是最常见的做法,即选取窗口内最大的那个元素作为代表;平均池化(Average Pooling)则是取均值。这两种方法都可以显著减少后续层次所需处理的数据量。 ```verilog // MaxPooling简易版本 module max_pooler( input wire [7:0] window[0:3], // 假定4个相邻像素组成的滑动窗 output reg [7:0] pooled_value ); integer i,max_val=0; initial begin for(i=0;i<4;i=i+1)begin if(window[i]>max_val) max_val=window[i]; end pooled_value=max_val; end endmodule ``` #### 全连接层计算单元 当所有低级别的视觉特性被充分抽取之后,则进入最后几步——将这些抽象出来的属性组合起来做出决策。这一步骤涉及到大量的矩阵相乘工作,同样可以通过专用加速引擎完成以提升效率。 #### 输出控制电路 最终得出的结果会是一个概率分布向量,指示各个类别可能性大小。根据具体情况可以选择最高得分对应的索引号作为预测标签返回给用户界面显示出来。
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值