
目录
1.1阿里的面试概述
在阿里的面试中,一个常见的机器学习案例可能涉及如何优化公司的推荐系统。以下是如何进行此类优化的步骤:
- 问题定义:首先需要明确推荐系统的目标。例如,提高用户满意度、增加用户参与度、提高销售额等。
- 数据收集:收集大量的用户数据和商品数据,包括用户的购买记录、浏览记录、搜索记录以及商品的销售量、评价等。
- 特征工程:对收集到的数据进行清洗和预处理,然后进行特征工程,将原始数据转化为更易于机器学习模型理解的形式。比如
本文详细介绍了阿里机器学习面试的过程,包括面试概述、面试流程和技术要点。重点讨论了如何优化推荐系统,涉及问题定义、数据收集、特征工程、模型选择与训练、评估与优化,以及部署与监控。同时,面试流程涵盖基本信息介绍、技术知识展示、业务场景解答、团队合作能力和个人兴趣。面试中涉及到的算法包括PCA、GBDT、XGBoost、K-means、SVM、LR、深度学习及半监督学习。

目录
在阿里的面试中,一个常见的机器学习案例可能涉及如何优化公司的推荐系统。以下是如何进行此类优化的步骤:
1079
721
1492

被折叠的 条评论
为什么被折叠?