【Simulink教程案例47】通过simulink实现基于深度学习网络的目标识别系统

本文是Simulink教程系列的一部分,讲解如何利用Simulink建立基于深度学习的目标识别系统。介绍了MATLAB在深度学习中的应用,包括数据准备、网络选择与创建、数据预处理、网络训练和目标检测。同时,详细阐述了Simulink中目标识别的步骤,如数据导入、模型构建、训练和目标检测,并展示了使用Image Classifier模块进行图像目标识别的设置。
摘要由CSDN通过智能技术生成

欢迎订阅《FPGA/MATLAB/SIMULINK系列教程》

Simulink教程目录

目录

1.软件版本

2.基于深度学习网络的目标识别系统概述

2.1 MATLAB在深度学习中的使用

2.2 Simulink在深度学习中的使用

3.基于深度学习网络的目标识别系统simulink建模

3.1 图片输入

3.2深度学习

3.3识别显示

4.性能仿真


1.软件版本

matlab2021a

2.基于深度学习网络的目标识别系统概述

       目标识别技术是一种基于深度学习网络的技术,它的主要原理是通过对输入的图像或视频进行分析&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值