目录
基于遗传优化的开放式带时间窗的多车场多商品车辆路径问题(VRP)求解是一种结合了遗传算法和车辆路径问题(Vehicle Routing Problem, VRP)的高效解决策略。这个问题的核心在于如何安排一系列的配送车辆,从一个或多个仓库中取货,并将这些货物送达给一系列的客户,同时满足每个客户的时间窗约束、车辆容量限制,以及可能的多个起始和结束点(开放式问题),并且涉及到多种商品的配送。这种类型的问题在物流、配送中心和供应链管理中非常常见。
1.VRP问题定义
ODTWMDVRP问题包含以下要素:
多个车场:设有多个起点(depots)供车辆出发和返回。
多商品:每辆车可能需要运输多种不同类型的商品,每种商品可能有特定的需求量和装载约束。
客户节点:每个客户节点有各自的需求量,且有特定的时间窗口限制,车辆必须在规定时间内到达并离开。
目标函数:通常为最小化所有车辆的总行驶距离(或时间)和满足所有客户需求的同时,遵守车辆的容量限制和时间窗约束。
2.遗传算法原理
遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的全局优化搜索算法,主要包括以下步骤:
初始化种群:生成一组随机解(染色体),每个解代表一个可行的配送路线方案。
适应度函数:定义一个评价解优劣的适应度函数,对于ODTWMDVRP问题,适应度函数可以是总行驶距离加上违反时间窗和容量约束的惩罚项:

其中,D(x) 是路线总距离,PTW(x) 是违反时间窗约束的惩罚,PC(x) 是违反容量约束的惩罚。
遗传算子:
选择:根据适应度函数的值,选择优秀的个体参与下一代的繁殖。
交叉(Crossover):模拟生物界中的基因重组现象,交换两个父代个体的部分基因(即部分路线)生成新的子代个体。
变异(Mutation):随机改变个体的部分基因(即更改路线中的某个访问顺序或站点)以引入多样性。
终止条件:反复进行上述步骤,直到达到预设的迭代次数或找到满意的解为止。
在处理ODTWMDVRP问题时,遗传算法需要特殊设计以处理多车场、多商品和时间窗约束。例如,在交叉和变异过程中,不仅要考虑车辆的行驶顺序,还要保证不违反时间窗和容量约束。此外,可能需要采用精英保留策略,确保每一代中最优秀的个体能直接遗传至下一代。
3.matlab核心程序
clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
%载量约束
Vsat = 25;
%物资载量约束
Wsat = 240;
%速度
Speed = 210;
%各个仓库的载具数量
Nb1 = 5;
Nb2 = 5;
Nb3 = 5;
%个体数
Pops = 100;
%迭代次数
Iters = 100;
%变异交叉概率
Pc = 0.8;
Pm = 0.3;
%初始化
load('h.mat');
Pdel = [49 34 9 10 58];%要删除的点
Pdel = sort(Pdel,'descend');
[RR,CC] = size(Pdel);
Demands(1,:) = a(:,4);
Demands2(1,:) = a(:,6);
Posxy(1,:) = a(:,2);
Posxy(2,:) = a(:,3);
Twin(1,:) = a(:,8);
Twin(2,:) = a(:,9);
tmps = 0;
for i=1:CC
tmps=tmps+Demands(1,Pdel(i))+Demands2(1,Pdel(i));
end
[RR2,CC2] = size(Demands);
old = (1:CC2);
for ij=1:CC
old(Pdel(ij)) =[];
Demands(Pdel(ij)) =[];
Demands2(Pdel(ij)) =[];
Posxy(:,Pdel(ij)) =[];
Twin(:,Pdel(ij)) =[];
end
D = func_jz(Posxy);
[RR3,CC3] = size(D);
%初始化点的出发仓库和回归仓库
for i=1:RR3
distance(1,i) = sqrt((Posxy(1,i)-22)^2+(Posxy(2,i)-75)^2);
distance(2,i) = sqrt((Posxy(1,i)-75.8)^2+(Posxy(2,i)-80.1)^2);
distance(3,i) = sqrt((Posxy(1,i)-53.4)^2+(Posxy(2,i)-59.9)^2);
if distance(1,i)<=distance(2,i)
if distance(1,i)<=distance(3,i)
distance(4,i)=1;
else
distance(4,i)=3;
end
else
if distance(2,i)<=distance(3,i)
distance(4,i)=2;
else
distance(4,i)=3;
end
end
end
%运算返回最优路径R和其总距离Rlength
[R,minlen]=func_VRP(old,tmps,D,distance,Twin,Demands,Demands2,Vsat,Wsat,Speed,Nb1,Nb2,Nb3,Pops,Iters,Pc,Pm,Posxy);
up4053
4.仿真结果


本文介绍了如何使用遗传算法解决物流中的开放式带时间窗的多车场多商品车辆路径问题(VRTWMDVRP),MATLAB代码展示了遗传算法的核心程序,包括种群初始化、适应度函数设计、遗传算子(选择、交叉和变异)以及如何处理多因素约束。文中还给出了仿真结果以展示算法的有效性。
1万+

被折叠的 条评论
为什么被折叠?



