Apollo进阶课程㉘丨Apollo控制技术详解——基于模型的控制方法

原创: 阿波君 Apollo开发者社区 8月22日

PID控制是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I微分单元D组成。PID控制的基础是比例控制;积分控制可消除稳态误差,但可能增加超调;微分控制可加快大惯性系统响应速度以及减弱超调趋势。

上周阿波君为大家详细介绍了「进阶课程Apollo控制技术详解——控制理论」

主要介绍Apollo控制相关内容,包括常用控制理论、功能限制与未来趋势、相似原理在不同模块中的应用目的是让大家了解控制模块的整体脉络及理论,通过案例讲解将理论转化成code及真正测试标准的方法。

本周阿波君将继续与大家分享Apollo控制技术详解——基于模型的控制方法的相关课程。下面,我们一起进入进阶课程第28期。

相对于简单的PID控制,Apollo里面更多使用基于模型的控制方法,它包括四个部分:建模、系统辨识、控制器设计参数调优。本节主要介绍前三个部分,如图1所示。

                                               ▲图1 设计基于模型的控制模块的关键步骤

1.建模

Modeling一般可以分为分析建模拟合建模。通常,一个模型主要由各种属性表示,如图2所示,主要包括描述输入输出的数量、模型是线性还是非线性、连续还是离散等特性。

                                                                       ▲图2 模型的属性表示

控制模块中的模型,通常包括运动学模型动力学模型。运动学模型是一种几何模型,感知、预测讨论的模型则以运动学模型为主。而在控制模块中,更多考虑动力学模型。实际上,运动学模型是动力学模型的一个子集。

                                                     ▲图3 运动学模型和动力学模型

在自动驾驶中,Dynamic model以Kinematics model为初始模型,将环境等参数设置到Kinematics model中,把车看作质点进行分析。Dynamic model将车按车轮等部分分开进行约束或者系统补偿。

图4是两个比较简单的几何模型,左图是一个综合移动机器人控制模型,右图是著名的自行车模型,它把汽车看作只有两个轮胎的自行车,该模型在当年的DARPA挑战赛上获得冠军。

                                                                           ▲图4 两个几何模型

实际上,只考虑几何约束是不够的。下图是一个动力学模型,它不仅考虑了几何约束,还考虑了力矩和扭矩平衡。如图5所示,在自行车模型中,把前后轮都在XY两个方向进行分解。

                                                                       ▲图5 动力学模型

图6是刚体的一些力矩分析以及扭矩分析的公式,总体满足牛顿第二定律。

                                                                 ▲图6 力矩与扭矩分析公式

在假设纵向速度为0的情况下,我们可以对横向方程进行线性化,如图7所示。线性化的过程需要基于一些假设。大家一定要记住,做完控制之后要检查这些假设是否合理或者是否会造成很大的误差。

                                                                         ▲图7 模型线性化

通常情况下,模型的建立是基于误差,而不是参考值,如图8所示,对实际侧向加速度和理想侧向加速度之间的误差进行建模。

                                                                        ▲图8 基于误差的建模

在控制器实现过程中,通常会将ODE或者PDE方程进行处理,转化为矩阵计算的形式。虽然在数学表达形式上不一致,但是其物理含义保持不变,如图9所示。在状态空间表示中还会给出一些状态量的标识,包括输入量

                                                                         ▲图9 状态空间表示

关于汽车的动力学模型,感兴趣的可以参考以下文献。

                                                     ▲图10 车辆动力学模型相关参考文献


2.系统辨识

                                                                         ▲图11 系统辨识

在模型中,有些参数是未知的,系统辨识的目的是确定这些未知参数的值。确定未知参数的方法有三种:白盒、灰盒以及黑盒方法

白盒方法是指对于基于第一原理(如牛顿定律)的模型结构,可以由测量数据估计模型的参数。

灰盒方法是用于只有部分模型结构可知,通过数据重建的方法来获取模型的其它部分的方法。

黑盒方法是指模型结构和参数都在未知的情况下,只能通过输入输出数据来估计的方法。

关于白盒和黑盒方法,更多的可以参考以下资料。

                                                     ▲图12 白盒和黑盒方法的参考资料

基于学习的系统辨识方法可以参考以下资料,仔细分析,我们会发现基于学习的辨识方法和黑盒方法很类似。

                                                  ▲图13 基于学习的系统辨识方法参考资料


3.控制器设计

基于模型的控制模块设计第三步是控制器的设计,包括滤波器设计控制器设计以及观察器设计等。

滤波器可以分为线性非线性,数字滤波或者模拟信号滤波,离散滤波或者连续滤波等,如图14所示。

                                                                          ▲图14 滤波器分类

前面已经介绍,系统在频域里面需要满足某些性能要求,滤波器通常也会对频域信号进行处理。根据频域边界,我们可以对滤波器进行进一步细分,如图15所示,包括低通滤波高通滤波等。

                                                       ▲图15 低通滤波和高通滤波

根据实现方式不同,滤波器又可以分为高斯滤波、卡尔曼滤波、贝叶斯滤波等,如图16所示,这些滤波器通常用于预测跟踪

                                                        ▲图16 用于预测和跟踪的滤波器

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 代码科技 设计师: Amelia_0503
应支付0元
点击重新获取
扫码支付

支付成功即可阅读