玻尔-索末菲模型

  • 玻尔-索末菲模型

  • 请注意,我们在整个模型中都是用了约化质量,请一定注意这一点
  • 精细结构常数:

\alpha\equiv \frac{e^2}{4\pi\epsilon_0\hbar c}\approx \frac{1}{137}


  • 相对论动能:

E_k=(m-m_0)c^2=m_0c^2(\frac{1}{\sqrt{1-\beta^2}}-1)

  • 总能量 

E=E_k-\frac{Ze^2}{4\pi\epsilon_0r}

  • 轨道分立条件一般成立

r_n=\frac{4\pi\epsilon_0\hbar^2}{me^2}\frac{n^2}{Z}

  • 考虑速度时很容易得到

v_n=\alpha c\frac{Z}{n}\rightarrow\frac{v}{c}=\frac{\alpha Z}{n}=\beta

  • 那么总能量

E=E_k-\frac{Ze^2}{4\pi\epsilon_0r}=E_k-\frac{Z^2}{n^2}\alpha^2mc^2

  • 换句话说

\begin{matrix} E_n=(m-m_0)c^2-mc^2(\frac{Z\alpha}{n})^2\\ =-m_0c^2(\sqrt{1-\beta^2}-1)\\ \approx -m_0c^2(\frac{\beta^2}{2}+\frac{\beta^4}{8}) \end{matrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值