公交客流预测与发车时刻表优化毕业论文【附代码+数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)融合多源数据特征的线路最大断面客流预测模型

  • 多源数据的利用与模型构建基础:公交运营系统提供了丰富的多源数据,为准确预测线路最大断面客流提供了数据支持。该模型首先借助卷积神经网络的强大功能,对影响客流的各种因素之间复杂的非线性关系进行拟合。这些影响因素可能包括时间因素(如不同时间段、工作日与非工作日等)、天气因素、季节因素以及线路周边的特殊事件等。通过卷积神经网络,能够自动学习和提取这些因素之间的潜在关联和特征,为后续的客流预测提供更全面的信息输入。
  • 长短期记忆神经网络的应用与时序特征建模:在考虑了外部影响因素后,模型进一步采用长短期记忆神经网络对客流数据本身的时序特征进行深入建模。客流数据具有明显的时间序列特性,即不同时间点的客流之间存在着一定的关联性和规律性。长短期记忆神经网络能够很好地捕捉这种时序依赖关系,记住历史客流信息,并根据这些信息对未来的客流进行预测。通过这种方式,模型能够更准确地反映客流随时间的变化趋势,提高预测的精度。
  • 基于误差成本的损失函数改进:考虑到最大断面客流预测结果与真实值之间正负误差的差异性特征,对传统的损失函数进行了改进,提出了一种基于误差成本的损失函数。在实际运营中,预测结果的误差大小对公交运营决策的影响是不同的,单纯的数值误差可能无法准确反映这种影响。基于误差成本的损失函数使得模型在训练过程中更加注重实际运营中的成本误差,即预测误差对公交运营成本、乘客满意度等方面的影响。这样可以使模型的训练更加贴近实际应用需求,提高模型在实际运营中的可靠性和有效性。

(2)多模式自适应的站点多步客流预测算法

  • 多种输出模式预测模型的集成:为了提高站点多步客流预测的精度,该算法集成了多种输出模式的预测模型。不同的预测模型可能在不同的场景下具有各自的优势,例如有些模型在短期预测中表现较好,而有些模型在长期预测或特定客流模式下更准确。通过集成多种模型,可以充分发挥它们的优势,弥补单一模型的局限性。
  • 自适应权重调整机制:算法的关键在于自适应地调整各个预测模型输出结果的权重。在预测过程中,根据不同模型在不同时刻的预测表现和实际客流情况,动态地调整它们对最终预测结果的贡献程度。这种自适应调整机制能够使算法更好地适应客流的变化规律,提高多步预测结果的整体精度。例如,在某个时间段,如果某个模型对当前客流趋势的预测更准确,那么它的权重就会相应增加,从而使最终的预测结果更倾向于该模型的输出。这样可以有效解决传统单一模式下预测精度衰减过快或前期精度不足的问题,使整个预测过程更加灵活和准确。
  • 应对客流复杂性和不确定性:公交站点的客流受到多种因素的影响,具有较高的复杂性和不确定性。这种多模式自适应的算法能够更好地应对这些复杂情况,通过不断调整模型权重,实时适应客流的变化,提高预测的可靠性和稳定性。无论是日常的客流波动,还是特殊事件(如节假日、大型活动等)导致的客流突变,算法都能够及时做出调整,提供相对准确的客流预测结果,为公交运营决策提供有力支持。

(3)基于客流预测的动态发车时刻表优化方法

  • 融合多源客流预测结果:该方法将最大断面客流预测结果和站点多步客流预测结果进行有机融合,以实时构建合理的动态发车时刻表。最大断面客流预测能够提供线路整体客流的宏观信息,帮助确定在哪些时间段和路段需要增加或减少车辆投放,以满足高峰和低谷时段的客流需求。站点多步客流预测则可以提供各个站点的详细客流信息,使发车时刻表的调整更加精准,考虑到不同站点之间客流的差异和变化趋势。通过综合这两种预测结果,能够更全面地了解线路上的客流情况,为制定动态发车时刻表提供更准确的数据依据。
  • 解决静态时刻表的局限性:传统的基于历史客流统计数据设置的静态发车时刻表无法及时响应实时客流需求的变化。在实际运营中,客流情况是动态变化的,可能受到各种因素的影响而与历史数据存在差异。例如,突发的天气变化、临时的交通管制或某一区域的特殊活动都可能导致客流的突然增加或减少。基于客流预测的动态发车时刻表优化方法能够实时根据预测的客流变化情况,提前调整发车时间间隔和车辆数量,使公交运营更加灵活和高效。这样可以避免车辆过度拥挤或空载现象的发生,提高车辆利用率和乘客满意度,同时降低企业的运营成本。
  • 实现公交运营的实时优化与调整:通过不断实时获取和更新客流预测数据,动态发车时刻表优化方法能够持续对发车时刻表进行优化和调整。在运营过程中,系统可以根据实时反馈的客流信息,及时调整后续的发车计划,确保公交服务能够始终与实际客流需求相匹配。这种实时优化的能力使得公交运营能够更好地适应城市交通的动态变化,提高整个公交系统的运营效率和服务质量,为实现公交管理的数字化驱动提供了关键技术支持。


time = 0:23;
% 天气数据(简单假设为晴天、阴天、雨天三种状态,用 1、2、3 表示)
weather = randi([1, 3], 1, 24);
% 季节数据(假设为春、夏、秋、冬,用 1、2、3、4 表示)
season = randi([1, 4], 1, 24);
% 历史客流数据(随机生成一些数据作为示例)
historicalPassengerFlow = rand(24, 1) * 100; % 假设客流在 0 - 100 人之间

% 构建卷积神经网络层(这里简单示例,实际需要根据具体数据和模型结构调整)
convLayer = convolution2dLayer([3, 3], 16, 'Padding','same');
% 构建长短期记忆神经网络层(假设隐藏层神经元数量为 32)
lstmLayer = lstmLayer(32);

% 定义数据预处理函数(这里简单示例,实际可能需要更复杂的处理)
function preprocessedData = preprocessData(time, weather, season, historicalPassengerFlow)
    % 将时间、天气、季节数据进行编码或归一化处理等
    encodedTime = onehotencode(time, 0:23);
    encodedWeather = onehotencode(weather, 1:3);
    encodedSeason = onehotencode(season, 1:4);
    normalizedPassengerFlow = historicalPassengerFlow / max(historicalPassengerFlow);
    
    % 合并数据
    preprocessedData = [encodedTime, encodedWeather, encodedSeason, normalizedPassengerFlow];
end

% 调用数据预处理函数
preprocessedData = preprocessData(time, weather, season, historicalPassengerFlow);

% 假设进行模型训练(这里只是简单示例,实际需要更多的训练步骤和参数调整)
% 定义训练数据和目标数据(假设目标是未来一小时的客流,所以目标数据是历史客流数据向右平移一位)
trainingData = preprocessedData(:, 1:end - 1);
targetData = preprocessedData(:, 2:end);

% 定义模型(这里简单组合卷积层和长短期记忆层,实际可能需要更多层和更复杂的结构)
model = sequential();
model.add(convLayer);
model.add(lstmLayer);
model.add(denseLayer(1)); % 输出层,预测一个值(未来一小时的客流)

% 编译模型
model.compile('adam','mse');

% 训练模型
model.fit(trainingData, targetData, 'epochs', 100, 'batchsize', 32);

% 进行预测(这里假设预测下一个时间点的客流)
newData = [onehotencode(time(end) + 1, 0:23), onehotencode(weather(end), 1:3), onehotencode(season(end), 1:4), historicalPassengerFlow(end) / max(historicalPassengerFlow)];
predictedPassengerFlow = model.predict(newData);

% 输出预测结果
disp(['预测的下一个时间点的客流为:', num2str(predictedPassengerFlow)]);

% 以下是一些简单的绘图代码,用于可视化数据(可根据实际需求调整)
% 绘制历史客流数据随时间的变化
figure;
plot(time, historicalPassengerFlow);
title('历史客流数据随时间的变化');
xlabel('时间(小时)');
ylabel('客流人数');

% 假设绘制天气对客流的影响(简单示例,可根据实际数据进行更详细的分析和绘图)
weatherGroups = unique(weather);
averagePassengerFlowByWeather = zeros(length(weatherGroups), 1);
for i = 1:length(weatherGroups)
    indices = find(weather == weatherGroups(i));
    averagePassengerFlowByWeather(i) = mean(historicalPassengerFlow(indices));
end
figure;
bar(weatherGroups, averagePassengerFlowByWeather);
title('不同天气下的平均客流人数');
xlabel('天气类型');
ylabel('平均客流人数');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值