深度学习在偏振光学系统自动优化中的应用研究【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1)深度学习在光学系统优化中的应用 深度学习技术在光学系统设计中的应用,主要体现在其强大的非线性求解能力,这对于传统光学优化算法中存在的阻尼因子影响大、收敛性较差等问题提供了新的解决方案。通过构建神经网络模型,可以学习光学镜片库中的参考镜片结构特征数据,实现基于光线追踪和偏光光线追踪的无监督训练模型,提高深度神经网络模型的泛化能力,从而实现偏光光学镜片的自动优化设计系统

(2)偏振光学系统自动优化设计方法的研究 针对光学系统中的偏振像差优化问题,研究了偏振光线追迹过程,并通过穆勒矩阵的求解确定了光学系统结构对于偏振度的影响。在此基础上,设计了基于偏振光线追迹的无监督损失函数,并提出了偏振光学系统设计的预训练方法。通过改变样本数据大小、迭代次数、学习率等训练参数优化训练网络模型,完成了偏振光学系统的自动优化设计

(3)深度学习模型的训练与验证 在模型训练方面,通过收集一定数量的光学镜头数据,按比例随机分为训练集和验证集。利用这些数据,基于深度学习构建了光学系统自动优化设计的神经网络模型,并设计了相应的损失函数。通过监督训练和无监督训练的结合,实现了透射式光学系统的自动优化设计。在验证过程中,通过对比分析深度学习设计结果和参考镜头的点斑大小,验证了网络模型的泛化能力和偏振光学系统设计的能力。实验结果表明,所设计的系统在全视场、全谱段下的像面点斑半径与参考镜头接近,并且能够根据不同焦距要求分别设计出光学系统初始结构,设计的100万组初始结构的成功率优于96.403%

 

 
% 定义深度学习模型结构
layers = [
    imageInputLayer([28 28 1])
    convolution2dLayer(5, 20, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    convolution2dLayer(5, 50, 'Padding', 'same')
    batchNormalizationLayer
    reluLayer
    maxPooling2dLayer(2, 'Stride', 2)
    fullyConnectedLayer(500)
    reluLayer
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

% 定义训练选项
options = trainingOptions('sgdm', ...
    'MaxEpochs', 10, ...
    'MiniBatchSize', 128, ...
    'ValidationData', {XTest, YTest}, ...
    'Plots', 'training-progress');

% 训练深度学习模型
net = trainNetwork(XTrain, YTrain, layers, options);

% 对测试数据集进行分类
YPred = classify(net, XTest);
accuracy = sum(YPred == YTest)/numel(YTest);
fprintf('分类准确率为: %0.2f%%\n', accuracy*100);

% 验证模型性能
% 假设我们有一个性能评估函数evaluateModel,它接受网络模型和测试数据
performanceMetrics = evaluateModel(net, XTest, YTest);
disp(performanceMetrics);

% 辅助函数:评估模型性能
function metrics = evaluateModel(net, XTest, YTest)
    YPred = classify(net, XTest);
    correctPredictions = sum(YPred == YTest);
    accuracy = correctPredictions/numel(YTest);
    precision = sum((YPred == YTest) & (YPred == 1))/sum(YPred == 1);
    recall = sum((YPred == YTest) & (YPred == 1))/sum(YTest == 1);
    f1Score = 2 * (precision * recall) / (precision + recall);
    metrics = struct('Accuracy', accuracy, 'Precision', precision, 'Recall', recall, 'F1Score', f1Score);
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值