✅ 博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。
✅ 具体问题可以私信或扫描文章底部二维码。
(1)多维度、多阶段韧性综合评估指标的构建
在当今复杂的环境下,城市配电网正朝着多能融合的方向转型,且各子系统间的相互依存关系愈发复杂。这种变化是受到气候变化、人类活动以及 “双碳” 目标下能源转型等多种因素的驱动。极端事件的频繁发生和电网规模的扩大,使得城市配电网面临着前所未有的挑战,而城市配电网又因其与关键电力用户直接相连、负荷密度大且重要性高,所以对其韧性的研究意义重大。
我们提出的韧性综合评估指标从两个独特角度出发,即 “基于系统性能分析” 和 “基于系统特征分析”,以此来全面刻画受极端事件影响的多能融合城市配电网在各个阶段和子系统的性能。
从基于系统性能分析的角度来看,韧性综合评估指标涵盖了性能维持指标、抵抗性指标、响应性指标和恢复性指标。性能维持指标反映了城市配电网在正常运行状态下保持稳定供电的能力,在极端事件发生前,它体现了电网是否能以最优状态为用户供电。例如,在日常运行中,电网电压是否稳定在合理范围内,供电频率是否保持恒定等。抵抗性指标则是在极端事件开始影响电网时发挥作用,它衡量了电网抵御极端事件冲击的能力,比如在遭遇强风、暴雨等极端天气时,电网线路和设备能够承受多大程度的破坏而不影响供电。响应性指标在极端事件持续过程中体现电网的应对能力,当部分线路出现故障时,电网的自动化保护系统和调度系统能否快速响应,调整供电策略,保障关键负荷的供电。恢复性指标则关注极端事件结束后,电网恢复正常供电的速度和能力,例如,故障修复的时间长短,恢复供电的区域范围等。这些指标随着极端事件的发展,从不同阶段反映了系统的性能变化,为调度运行人员提供了全面了解系统状态的依据。
基于系统特征分析方面,韧性综合评估指标包括孤岛连通度指标、孤岛供电覆盖数量指标和关键负荷维持时间指标。在极端事件导致电网部分区域形成孤岛的情况下,孤岛连通度指标就显得尤为重要。它描述了各个孤岛之间以及孤岛与主电网之间的连接可能性和难易程度,比如在地震等灾害导致部分线路损坏后,通过分析哪些孤岛可以通过备用线路或应急设备重新连接。孤岛供电覆盖数量指标则关注在孤岛状态下,能够获得供电的区域数量,这涉及到分布式能源、储能设备等在孤岛中的有效利用。关键负荷维持时间指标重点考量在极端事件中,对于医院、通信基站等关键负荷,电网能够维持其供电的时长,这直接关系到社会的应急响应和基本功能的维持。通过这些指标,可以更好地关注孤岛和各类关键负荷的特征,从而更全面地评估城市配电网的韧性。
这种多维度、多阶段的韧性综合评估指标能够在极端事件发生的各个时期,为调度运行人员提供全面、准确的系统性能信息,帮助他们做出更合理的决策,保障城市配电网的稳定运行。
(2)考虑极端事件特征可知性的韧性提升规划方法
在城市配电网的设计和建设 / 改造的超前规划阶段,如何利用极端事件的信息和特征,同时满足不同决策者的风险规避偏好,是提高城市配电网韧性的关键问题。
我们将决策者分为两类:有信息支撑的较为保守的决策者和无信息支撑的极度保守的决策者。这两类决策者在面对以韧性提升为目标的城市配电网规划时,会因掌握信息的不同而形成不同的策略。
对于有信息支撑的较为保守的决策者,以台风极端事件为例进行说明。在规划过程中,我们将随机优化与信息间隙决策理论(IGDT)风险规避策略相结合。随机优化可以处理台风等极端事件中的不确定性因素,比如台风的路径、强度等。通过建立概率模型,对不同情况进行分析和模拟。而 IGDT 风险规避策略则在随机优化的基础上,进一步考虑决策者对风险的承受能力。在这种情况下,决策者可以根据已有的台风信息,如历史数据、气象预报等,在规划设计城市配电网时,在保证一定供电可靠性的前提下,合理安排电网的布局、设备选型等。例如,在台风经常登陆的沿海地区,根据台风强度的概率分布,合理确定输电线路的杆塔强度和防风设计标准,同时避免过度投资。这样可以在节约投资成本的同时,有效地规避台风可能带来的风险,提高城市配电网在台风极端事件下的韧性。
对于无信息支撑的极度保守的决策者,IGDT 风险规避策略同样发挥重要作用。由于这类决策者没有关于极端事件的具体信息,他们需要一种在完全不确定情况下的规划策略。IGDT 风险规避策略为他们提供了在不同性能预期情况下,最大程度规避未知极端事件风险的方法。例如,在设计城市配电网时,无论未来可能面临何种极端事件,都优先考虑采用高可靠性的设备和冗余设计,以确保在最坏情况下,电网仍能保持一定的供电能力。这种规划策略虽然可能会增加初始投资成本,但对于那些对供电可靠性要求极高、无法承受任何供电中断风险的地区或用户来说,是一种有效的韧性提升方法。通过这种针对不同决策者的韧性提升规划方法,可以更好地适应不同的规划需求,提高城市配电网在极端事件下的适应能力。
(3)极端事件来临前的韧性储备提升方法
在极端事件即将发生的事前准备阶段,若不采取积极有效的措施,将会增加事中、事后阶段维持和恢复系统性能的难度。因此,保证城市配电网正常、可持续运行,并为即将来临的极端事件做好准备至关重要。
在此,我们提出了 “韧性储备” 的概念,它是从 “韧性” 衍生而来,用于量化城市配电网在极端事件来临前的储备能力。同时,提出了源 - 路径 - 终端指标来衡量这种韧性储备能力。在现代城市中,网约电动汽车的发展为城市配电网的韧性储备提供了新的思路。网约电动汽车的出行和充电行为受到网约车平台的统一管理,且对充电价格较为敏感。我们将网约电动汽车的订单分配和充电调度问题建模为半马尔可夫决策过程。通过这种方式,可以更好地协调网约电动汽车的充电行为与城市配电网的运行。
为了实现这一目标,我们提出了一种交互式深度强化学习框架。在这个框架中,电网调度中心和网约车平台可以进行信息交互和收益协调。电网调度中心可以根据电网的实时状态,如负荷情况、可再生能源发电情况等,向网约车平台发送充电建议或控制信号。网约车平台则根据这些信息,结合订单分配情况,调整电动汽车的充电计划。例如,在电网负荷较低且可再生能源发电充足的时候,电网调度中心可以引导网约车平台安排更多的电动汽车充电,这样既可以利用多余的电能,又可以为电网储存一定的能量,提高电网的韧性储备。而在电网负荷高峰时期,网约车平台可以调整充电策略,减少对电网的冲击。通过这种交互式深度强化学习框架,所提方法可以显著提高系统的韧性储备能力,同时不会明显降低网约车平台的整体订单收益。这样不仅可以保障城市配电网在极端事件来临前做好准备,还能促进可再生能源的消纳,为关键负荷的恢复储备资源、提供支撑,确保城市在极端事件下的基本功能运行。
(4)计及极端事件全时序的多阶段三层 DAD 韧性提升协同优化模型
在城市配电网应对极端事件的过程中,不同阶段的韧性提升措施相互影响。为了有效处理这种复杂的关系,我们提出了计及极端事件全时序的多阶段三层防御者 - 攻击者 - 防御者(DAD)韧性提升协同优化模型。
在这个模型中,我们将极端事件视为 “攻击者”,它对城市配电网和相关系统造成破坏和干扰。而将不同阶段的韧性提升措施视为 “攻击者” 攻击前后的两类 “防御者”。这种三层 DAD 模型能够在系统层面上实现对系统性能随极端事件发展变化的多个阶段中韧性提升措施的协调。
以冰暴灾害为例,冰暴灾害具有鲜明的 “发生 - 演化 - 致灾” 特点。当冰暴袭击城市时,它会对城市配电网和城市交通系统产生严重影响。我们建立冰暴灾害攻击城市配电网和城市交通系统的模型,分析不同攻击类型和强度的冰暴对这两个系统的影响。比如,轻度冰暴可能只是导致输电线路表面覆冰,增加线路损耗和降低输电能力;而重度冰暴可能会造成杆塔倒塌、交通瘫痪等更严重的后果。
通过这个模型,我们全面分析在 “超前规划”“事前准备”“事中响应” 和 “事后恢复” 四个阶段中,各项措施间的协调配合与相互作用关系。在超前规划阶段,考虑冰暴可能的影响,规划电网布局和设备选型时要考虑抗冰能力,如采用加强型杆塔、耐寒电缆等。事前准备阶段,储备除冰设备、应急发电设备等资源。事中响应阶段,及时启动应急响应机制,调整电网运行方式,保障关键负荷供电,同时协调交通系统保障应急救援的顺利进行。事后恢复阶段,快速修复受损的电网设施和交通设施,恢复城市正常运行。研究各项措施对系统韧性提升的影响,比如不同的规划方案和应急措施对减少停电时间、恢复供电范围等方面的作用。通过这种协同优化模型,可以更好地协调各个阶段的韧性提升措施,提高城市配电网在冰暴等极端事件下的整体韧性。
(5)多能融合系统建模及韧性综合研究
在考虑多能融合的城市配电网韧性研究中,需要进一步分析多能融合系统的相互依存关系,以及各类能源和资源的互补与替代作用。我们对包括天然气系统、供热系统、交通系统在内的多能融合系统及耦合元件进行建模。
随着科技的发展,数据中心及其余热回收在城市配电网中扮演着重要角色。数据中心作为关键负荷,对城市配电网韧性有着重要影响。一方面,数据中心需要持续稳定的电力供应,一旦停电可能导致大量数据丢失和业务中断,所以在极端事件中保障数据中心的供电是提高城市配电网韧性的关键。另一方面,数据中心运行过程中产生的余热可以回收利用,为城市供热等提供能源,从而成为城市配电网韧性提升的一种特殊资源。
我们将韧性评估与韧性提升进行综合研究,考虑多维度、多阶段韧性评估指标与韧性提升措施的关联性。不同的韧性提升措施对各韧性评估指标有着不同的贡献大小和影响程度。例如,优化天然气系统的供应策略可以提高孤岛供电覆盖数量指标,因为在极端事件中天然气可以用于发电,为孤岛区域提供电力。对于供热系统,利用其热惯性可以在一定时间内维持室内温度,减少对电力供热的需求,从而减轻电网负荷,提高性能维持指标。
同时,考虑天然气系统和供热系统的动态特性,一方面可以提高系统的建模与分析精度。通过更准确地描述天然气在管道中的流动、存储以及供热系统中热量的传递和储存过程,更好地模拟极端事件下这些系统的运行状态。另一方面,可以挖掘和利用天然气和供热系统中的管存(linepack storage)资源和建筑物热惯性。管存资源可以在天然气供应紧张时作为应急储备,建筑物热惯性可以在供热系统受到影响时,延缓室内温度下降速度,减少对电力供热的依赖。将这些具有 “虚拟储能” 特性的资源作为受极端事件影响下特殊的可用资源,分析其对多能融合城市配电网韧性提升的作用和影响,从而制定更具针对性和有效性的解决方案和应对措施,增强城市配电网对极端事件的抵御和恢复能力。
import numpy as np
import random
# 模拟城市配电网参数
num_buses = 20 # 节点数量
num_lines = 30 # 线路数量
num_loads = 15 # 负荷数量
num_generators = 5 # 发电机数量
# 模拟极端事件对电网的影响(简单用概率表示故障概率)
fault_probability_lines = np.random.rand(num_lines) * 0.3 # 线路故障概率
fault_probability_generators = np.random.rand(num_generators) * 0.2 # 发电机故障概率
# 模拟性能维持指标计算(简单示例)
def performance_maintenance():
available_generators = sum([1 if random.random() > fault_probability_generators[i] else 0 for i in range(num_generators)])
available_lines = sum([1 if random.random() > fault_probability_lines[i] else 0 for i in range(num_lines)])
return available_generators * available_lines / (num_generators * num_lines)
# 模拟抵抗性指标计算(简单示例)
def resistance_indicator():
return 1 - np.mean(fault_probability_lines) - np.mean(fault_probability_generators)
# 模拟响应性指标计算(简单示例)
def responsiveness_indicator():
return random.uniform(0.5, 1) # 简单模拟一个响应能力值
# 模拟恢复性指标计算(简单示例)
def restorability_indicator():
return random.uniform(0.3, 0.8) # 简单模拟一个恢复能力值
# 主程序
performance = performance_maintenance()
resistance = resistance_indicator()
responsiveness = responsiveness_indicator()
restorability = restorability_indicator()
print("性能维持指标:", performance)
print("抵抗性指标:", resistance)
print("响应性指标:", responsiveness)
print("恢复性指标:", restorability)