纯电动汽车电驱动系统的精细建模与动力学振动特性分析【附数据】

博主简介:擅长数据搜集与处理、建模仿真、程序设计、仿真代码、论文写作与指导,毕业论文、期刊论文经验交流。

 ✅ 具体问题可以私信或扫描文章底部二维码。


(1) 电驱动系统内部激励建模。在一体化电驱动系统中,内部激励源是系统振动的主要因素之一。本文基于电磁场理论,推导了电机转子在偏心情况下的不平衡磁拉力模型。该模型能够描述由于电机转子偏心引起的磁力变化,从而为电驱动系统振动特性的研究奠定了基础。除了电机转子偏心引发的磁力外,本文还基于赫兹接触理论和深沟球轴承拟静力学模型,建立了轴承刚度的计算模型。该模型考虑了不同载荷对轴承刚度的影响,能够描述电驱动系统在不同工况下的轴承特性变化。此外,基于斜齿轮啮合传动机理,本文推导了斜齿轮的时变啮合线长度模型,并分析了螺旋角和齿宽对啮合长度的影响。为更好地描述齿轮啮合刚度的变化,基于能量法推导了齿形误差下的齿轮时变啮合刚度模型,并通过与已有文献的对比,验证了模型的准确性。上述激励模型为一体化电驱动系统的动力学研究提供了精确的内部激励描述。

(2) 电驱动系统的动力学建模。为了对一体化电驱动系统进行全面的动力学分析,本文基于广义有限元思想,对系统进行模块化处理。首先,采用转子动力学理论,将电机转子离散为多圆盘转子系统,推导了其动力学模型。通过对电机转子的固有频率进行收敛性分析,确定了转子模型的离散化程度。其次,基于Timoshenko梁理论,建立了电驱动系统传动轴的有限元模型,从而有效地考虑了传动轴的横向、弯曲和剪切变形特性。此外,针对斜齿轮的啮合动力学问题,本文建立了考虑主动轮旋转方向和旋向的弯-扭-轴-摆12个自由度的齿轮啮合模型。最后,综合上述子模型,考虑到轴承支承刚度的各向异性,搭建了一体化电驱动系统的机械-电磁耦合动力学模型。该模型能够系统地描述电驱动系统中的机电耦合效应,涵盖了转子、轴承、齿轮等多个子系统之间的相互作用,为振动特性的分析提供了理论工具。

(3) 系统固有特性研究及几何参数影响分析。本文利用复模态理论,对一体化电驱动系统的多自由度模型进行了模态分析,计算了系统的固有频率和临界转速。通过分析系统的模态振型特性,研究了在不同激励条件下电驱动系统的模态响应特征。此外,本文从瞬态工况和稳态工况两个角度对搭建的理论模型进行了验证,结果显示模型具有较高的精度。在此基础上,本文针对电驱动系统的几何结构参数,例如轴方位角、齿轮布置方案和中间轴齿轮偏转角等,进行了详细的分析,研究了这些几何参数对系统振动响应的影响规律。结果表明,合理选择轴方位角和齿轮布置方案能够显著降低系统的振动响应,从而为电驱动系统的结构设计与优化提供了理论依据。

(4) 内部激励对振动特性的影响。本文深入研究了电驱动系统内部激励源对系统振动特性的影响。首先,分析了电磁刚度对系统固有频率的影响,结果发现电磁刚度的增加会使系统的各阶固有频率在不同程度上升高。其次,研究了电机转子偏心引起的不平衡磁拉力对系统振动的影响,以及不平衡磁拉力与电磁刚度共同作用下的系统响应变化。进一步,本文还研究了齿轮轮齿修形对系统振动的影响,结果表明,合理的轮齿修形位置和修形量能够有效地降低系统振动幅值。此外,基于齿轮时变啮合刚度的分析,提出了针对电驱动系统的振动控制策略,从内部激励角度对系统进行优化,为提升系统的NVH性能提供了理论支撑。

(5) 电驱动系统的振动试验研究。为了验证理论模型的准确性和研究成果的实用性,本文基于汽车传动系统的公共控制平台,搭建了电驱动系统的振动噪声测试台架。通过在匀速和匀加速两种工况下进行振动加速度测试,分析了系统在不同激励频率下的响应特性。根据进场噪声的分析结果,本文确定了影响噪声的主要激励阶次,并利用Vold-Kalman滤波器对相应阶次的振动加速度信号进行了提取,分析了其瞬态变化特征。实验结果与理论模型的仿真结果一致性较好,验证了所建立的一体化电驱动系统动力学模型和内部激励建模的准确性和实用性。通过实验和仿真对比,本文对电驱动系统的振动机理有了更深入的认识,为其优化设计提供了有力的支撑。

(6) 研究结果和工程应用价值。本文通过对一体化电驱动系统的动力学建模与振动特性分析,揭示了电机转子偏心、不平衡磁拉力、齿轮啮合刚度等因素对系统振动的影响规律。在理论层面,本文的研究成果为新能源汽车电驱动系统的动力学行为预测和振动机理分析提供了完整的基础框架;在工程应用层面,这些研究结果对电驱动系统的结构优化设计、振动控制以及NVH性能提升具有重要的参考价值。研究中提出的机电耦合建模方法和振动控制策略,对自主知识产权的电驱动系统建模软件开发具有重要的理论意义和广阔的应用前景。

% 电驱动系统动力学建模与振动特性分析
% 初始化系统参数
rotor_mass = 50; % 电机转子质量 (kg)
shaft_length = 1.2; % 传动轴长度 (m)
bearing_stiffness = 1e6; % 轴承刚度 (N/m)
gear_stiffness = 2e5; % 齿轮啮合刚度 (N/m)
rotor_eccentricity = 0.01; % 转子偏心距 (m)

% 模态分析参数
damping_ratio = 0.02; % 阻尼比
num_modes = 5; % 模态数量

% 计算系统的固有频率和模态振型
[frequencies, mode_shapes] = modal_analysis(rotor_mass, shaft_length, bearing_stiffness, gear_stiffness, num_modes);

% 主循环:仿真内部激励对系统振动响应的影响
for t = 0:0.01:10
    % 更新转子偏心带来的不平衡磁拉力
    magnetic_force = compute_magnetic_force(rotor_eccentricity, t);

    % 计算齿轮啮合刚度的时变特性
    gear_stiffness_time_var = gear_stiffness * (1 + 0.1 * sin(2 * pi * t));

    % 振动响应计算
    vibration_response = compute_vibration_response(rotor_mass, shaft_length, bearing_stiffness, gear_stiffness_time_var, magnetic_force, damping_ratio);

    % 输出仿真结果
    fprintf('时间: %.2f s, 振动响应幅值: %.3f m/s^2\n', t, vibration_response);
end

function [frequencies, mode_shapes] = modal_analysis(rotor_mass, shaft_length, bearing_stiffness, gear_stiffness, num_modes)
    % 模态分析函数,计算系统的固有频率和模态振型
    frequencies = zeros(num_modes, 1);
    mode_shapes = zeros(num_modes, 1);
    for i = 1:num_modes
        frequencies(i) = sqrt((bearing_stiffness + gear_stiffness) / rotor_mass) / (2 * pi) * i;
        mode_shapes(i) = shaft_length / (i + 1);
    end
end

function magnetic_force = compute_magnetic_force(rotor_eccentricity, t)
    % 计算转子偏心带来的不平衡磁拉力
    magnetic_force = 1000 * rotor_eccentricity * sin(2 * pi * t);
end

function vibration_response = compute_vibration_response(rotor_mass, shaft_length, bearing_stiffness, gear_stiffness, magnetic_force, damping_ratio)
    % 计算系统的振动响应
    stiffness_total = bearing_stiffness + gear_stiffness;
    damping_force = damping_ratio * magnetic_force;
    vibration_response = (magnetic_force - damping_force) / (rotor_mass + stiffness_total / shaft_length);
end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坷拉博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值